
Вычислительные технологии Том 9, № 6, 2004

MODELING OF TURBULENCE TRANSPORTING

OF ADMIXTURE OVER

HEATED SURFACE

U. Abdibekov, N. Danaev, B. Surapbergenov

Department of Mechanics and Mathematics,

al-Farabi Kazakh National University, Almaty

e-mail: uali@kazsu.kz, Danaev@kazsu.kz

Представлена модель турбулентного течения, основанная на уравнениях вторых
моментов для полей скорости, температуры и концентрации. Модель построена на ап-
проксимации локально равновесной турбулентности. Решение полученного уравнения
представлено совокупностью двух факторов. Первый описывает однородное течение,
а второй учитывает влияние силы Архимеда, которая зависит от числа Ричардсона.
Модель использует минимальное количество эмпирических постоянных теории одно-
родной турбулентности.

Introduction

The emissions into the moving medium in three-dimensional domain are one of actual problems.
If the emissions enter into the moving medium, for example into the atmosphere, then usually
the medium itself has already the turbulence due to the turbulence generation in the ground area
of basic flow. In the domains, which are in a distance from an emission source, this turbulence
dominates over the turbulence generated by an emission source and defines the distribution of
polluting substances. The problems in such formulation are usually reduced to the investigation
of passive admixture transference, where the admixture does not influence the basic moving
medium.

The problem formulated in this paper, on the admixture, which is moving together with
basic flow above a surface with non-uniform temperature and interacting with basic motion
and temperature, has a great practical usage. In this case it is impossible to consider the
admixture to be passive due to the complex correlations of velocity, temperature and admixture
concentration.

Currently a range of the mathematical models has been created for the description of
admixture dispersion processes. These models are based on the equations of turbulent diffusion
and generally constructed for the velocity and one of the scalar value: either temperature or
concentration. In the present work the mutual correlations of temperature, concentration and
flow velocities are taken into account.

The volume forces have a great influence on the character of turbulence if they are intercon-
nected with the pulsations of velocity. The simplest example is the strong influence of gravity
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on the flow with density pulsations. If density pulsations appear as the result of the existence
of average density gradient in the same direction as average velocity gradient or when the flow
actually arises due to a difference of average density, then the good correlation is appeared
between pulsations of density and velocity. Therefore, the influence of buoyancy forces may
become very great. In case when the density increases in a vertical direction from below to
upwards we have the unstable flow. The interrelation of density and velocity may lead to
the transformation of potential energy into turbulent kinetic energy. On the contrary when
the density decreases from below to upwards faster than it is necessary for the preservation
of hydrostatic balance of fluid, then the available turbulent energy can be transformed into
potential energy. It means that turbulent mixing tends to decrease a gradient of density and
therefore to raise the center of gravity of fluid volume.

1. Equations

In the given problem the main goal is to obtain the expression for turbulent characteristics
in the explicit form via average characteristics of the turbulent flow. We use the equations
describing the changes of Reynolds turbulent stresses [1, 2]:
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For the description of complex turbulent flows, which have a temperature and a concentration,
we use the additional equations for the second order moments of temperature and concentration
fields [3, 4]:
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+ Ūk

∂ qt

∂ xk

+ ukt
∂ Q

∂ xk

+ ukq
∂ T

∂ xk

+
∂

∂xk

(

−ν
∂qt

∂xk

+ ukqt

)

+ (a + d)
∂q

∂xk

∂t

∂xk

= 0, (6)



MODELLING OF TURBULENCE TRANSPORTING ... 51

where τ — time; p — pressure; Ui, ui — components of average and pulsation velocities respectively
to the axes xi; T, t — average and pulsation temperatures; Q, q — average and pulsation
characteristics of the concentration. In the flow of a general type there exist six components of
the tensor of Reynolds stresses uiuj due to the symmetry; three components of the correlation
uit type and three components of the correlation uiq type; two equations for t2 and q2 and the
equation for the correlation of tq type. Hence, it is necessary to solve fifteen partial differential
equations. It is obvious that the equations contain some new unknown variables except the
average velocity and the second order moments. For defining some terms of the equation system
we use the approximated semi empirical ratios. The expressions for the change of energy of
various components of pulsations are expressed in the form [3]:
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For the dissipation of pulsation energy and its analogues the following expressions are used:
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but for the second order moments they have the following form:
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It is assumed that shear turbulent flows are considered in Boussinesq approximation, i. e. the
changes of density are small and they are taken into account only in mass forces [4]:
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By writing down the equations (1)–(6) for the pure shear developed turbulent flow, neglecting
the turbulent diffusion and closing these equations by the semi empirical hypotheses (7)–(9)
we get the following system of equations:
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where E — kinetic turbulent energy; l — scale of turbulence.
The solution of the equation system (10) regarding to pulsation characteristics consists of

two factors. The first one corresponds to the flow in homogenous environment, but the second
one takes into account Archimede’s forces caused by temperature and concentration fields:
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Let us note that the parameters of averaged flows are known. The expressions for the homogenous
medium have the following basic form:
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The functions taking into account the influence of stratification on the turbulent flow have the
following form:
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Let us note that some functions coincide due to the symmetry of the initial equations.
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where Rt, Rq — Richardson’s numbers depending on temperature and concentration respectively.
Pr, Sc — turbulent Prandtl’s and Schmidt’s numbers respectively depending on physical properties
of a fluid. All constants cq, ct, cs, kt, kq are determined via k and c, which can be found as follows:
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where the constant k/c = 7 is determined from the theory of isotropic turbulence as the
anisotropy coefficient independent of a type of a flow. Thus, the obtained expressions allow to
close the Reynolds’s equations for complex flows and to calculate turbulent pulsation characteristics
of a flow.

2. Basic equations

In order to study the interaction of the fields of velocity, temperature and admixture concentration,
the advanced turbulent flow will be considered in the three-dimensional aerodynamic channel.
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The Reynolds three-dimensional non-stationary equations, turbulent heat and concentration
transference are used:

∂Ui

∂τ
+ Uj

∂Ui

∂ xj

= − 1

ρ0

∂P

∂ xi

+
∂

∂xj

〈−ujui〉 − δi3gρ′,

∂T

∂τ
+ Uj

∂T

∂ xj

=
∂

∂xj

(

−ujt
)

, (12)

∂Q

∂τ
+ Uj

∂Q

∂ xj

=
∂

∂xj

(−ujq) ,

∂Uj

∂ xj

= 0,

ρ′ = −βT + αQ.

It is assumed that the resulting velocity Ug, which is parallel to the wall, locates on harsh
borders at the point xc just behind the viscous sublayer. The resulting velocity is expressed via
the dynamic velocity by the logarithmic law of the wall:
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where yc = xcU∗/ν, κ = 0, 4 is von Karman’s constant, G= 9 is the coefficient of wall roughness,
U∗ is the dynamic velocity on a wall, xc is such that the condition is fulfilled: 30 ≤ yc ≤ 100.

The following conditions are taken for the temperature and the concentration:
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The system of equations (12) is closed by the turbulence model (11) and solved by the numerical
method [6] taking into account the boundary conditions (13)–(15).



56 U. Abdibekov, N. Danaev, B. Surapbergenov

3. Numerical Results

The stated model is applied to solve the problem described in the paper [5]. The movement
of stratified air in rectangular three-dimensional domain is considered in the experiment. The
height is H3 = 60 sm, the width is H2 = 182 sm and the length is H1 = 360 sm. There is the
linear source with the length H2 = 152 sm in front of the heated square plate. This source
is positioned across the flow. The admixture is entering from the source to the basic flow
motion. The parameters of basic flow are taken as follows. The average velocity of the flow is
U0 = 1, 25m/s, the temperature of the flow is Tv = 43 ◦C, the temperature of the heated plate
is Tb = 121 ◦C, the temperature outside of the heated plate is Ts = 4 ◦C.

The characteristics of the averaged fields of velocity, the spatial distribution of temperature
and the transfer of concentration are obtained. Fig. 1 shows the profiles of longitudinal velocity
U1/Um on different distances from the beginning of the heated surface. 1 is the profile of flow on
the beginning of the heated plate, 2 is the profile on the middle of the heated plate, 3 is the profile
on the end of the heated plate. Above the heated surface there is the deformation of the flow
caused by thermal convection. The longitudinal velocity on the top of the channel is accelerated;
and the velocity is decreased directly above the heated surface. Fig. 2 shows the velocity vector
field in the cross section of the flow at the end of the heated plate, where secondary flows
are formed. Fig. 3 presents the spatial distributions U1/Um at the same section. In fig. 3 we
can see that the longitudinal component of velocity above the heated surface is decreased, but
the velocity is increased on lateral edges of the channel. Fig. 4 shows contour distributions of
concentration of the admixture in longitudinal section in the middle of the channel along the
basic flow. In fig. 5 we can see contour distributions of the admixture concentration in the
represented cross section. By comparing fig. 5 and fig. 2 it is can be seen that the velocity
vector field and the concentration field are correlated. The distribution of temperature in the
cross section at the end of the heated plate is shown in fig. 6. The modeling results coincide
with the experimental data. They describe the basic laws of transfer of the admixture above
the heated surface.

Fig. 1. Fig. 2.
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Fig. 3. Fig. 4.

Fig. 5. Fig. 6.

Thus, the turbulence model allows solving the problems on the transfer of admixture above
the temperature-non-uniform spreading surface and to calculate the fields of average velocity,
temperatures and concentration. Additionally the mutual correlations of these fields are taken
into account. This turbulence model can be applied for modeling the turbulent transfer of
admixture in stratified medium.
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