Информация о публикации

Просмотр записей
Инд. авторы: Panov L.V., Chirkov D.V., Cherny S.G., Pylev I.M.
Заглавие: Numerical simulation of pulsation processes in hydraulic turbine based on 3D model of cavitating flow
Библ. ссылка: Panov L.V., Chirkov D.V., Cherny S.G., Pylev I.M. Numerical simulation of pulsation processes in hydraulic turbine based on 3D model of cavitating flow // Thermophysics and Aeromechanics. - 2014. - Vol.21. - Iss. 1. - P.31-43. - ISSN 0869-8643. - EISSN 1531-8699.
Внешние системы: DOI: 10.1134/S0869864314010041; РИНЦ: 23994758; SCOPUS: 2-s2.0-84908066450; WoS: 000337078900003;
Реферат: eng: A new approach was proposed for simulation of unsteady cavitating flow in the flow passage of a hydraulic power plant. 1D hydro-acoustics equations are solved in the penstock domain. 3D equations of turbulent flow of isothermal compressible liquid-vapor mixture are solved in the turbine domain. Cavitation is described by a transfer equation for liquid phase with a source term which is responsible for evaporation and condensation. The developed method was applied for simulation of pulsations in pressure, discharge, and total energy propagating along the flow conduit of the hydraulic power plant. Simulation results are in qualitative and quantitative agreement with experiment. The influence of key physical and numerical parameters like discharge, cavitation number, penstock length, time step, and vapor density on simulation results was studied.
Ключевые слова: full load surge; hydro turbine; cavitation; numerical simulation;
Издано: 2014
Физ. характеристика: с.31-43
Цитирование:
1. S.G. Cherny, D.V. Chirkov, D.V. Bannikov, V.N. Lapin, V.A. Skorospelov, I. Eshkunova, and A. Avdushenko, 3D numerical simulation of transient processes in hydraulic turbines, in: IAHR Symp. on Hydraulic Machinery and Systems, Timisoara, Romania, 20–24 September, 2010.
2. G.D. Ciocan, M.S. Iliescu, T.C. Vu, B. Nennemann, and F. Avellan, Experimental study and numerical simulation of the FLINDT draft tube rotating vortex, J. Fluids Engng., 2007, Vol. 129, No. 2, P. 146–158.
3. P. Doerfler, System dynamics of the Francis turbine half load surge, in: IAHR Symp. on Hydraulic Machinery and Systems, Amsterdam, Netherlands, 1982.
4. J. Koutnik, C. Nicolet, G.A. Schohl, and F. Avellan, Overload surge event in a pumped storage power plant, in: IAHR Symp. on Hydraulic Machinery and Systems, Yokohama, Japan, 2006.
5. C. Nicolet, Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems, PhD thesis (EPFL № 3751, http://library.epfl.ch/theses/?nr=3751), 2007.
6. F. Flemming, J. Foust, J. Koutnik, and R.K. Fisher, Overload surge investigation using CFD data, in: IAHR Symp. on Hydraulic Machinery and Systems, Foz do Iguassu, Brazil, 2008.
7. S. Alligne, C. Nicolet, P. Allenbach, B. Kawkabani, J.J. Simond, and F. Avellan, Influence of the vortex rope location of a Francis turbine on the hydraulic system stability, in: IAHR Symp. on Hydraulic Machinery and Systems, Foz do Iguassu, Brazil, 2008.
8. S. Alligne, P. Maruzewski, T. Dinh, B. Wang, A. Fedorov, J. Iosfin, and F. Avellan, Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model, in: IAHR Symp. on Hydraulic Machinery and Systems, Timisoara, Romania, 2010.
9. P.K. Doerfler, M. Keller, and O. Braun, Francis full-load surge mechanism identified by unsteady 2-phase CFD, in: IAHR Symp. on Hydraulic Machinery and Systems, Timisoara, Romania, 2010.
10. L.V. Panov, D.V. Chirkov, and S.G. Cherny, Numerical algorithms for modeling cavitational flow of a viscous fluid, Computational Technologies, 2011, Vol. 16, No. 4, P. 96–113.
11. L.V. Panov, D.V. Chirkov, S.G. Cherny, I.M. Pylev, and A. A. Sotnikov, Numerical simulation of steady cavitating flows of viscous fluid in a Francis turbine, Themophysics and Aeromechanics, 2012, Vol. 19, No. 3, P. 415–427.
12. A.Yu. Avdyushenko, S.G. Cherny, and D.V. Chirkov, Numerical algorithm for modelling three-dimensional flows of an incompressible fluid using moving grids, Computational Technologies, 2012, Vol. 17, No. 6, P. 3–25.
13. A.K. Singhal, N. Vaidya, and A.D. Leonard, Multi-dimensional simulation of cavitating flows using a PDF model for phase change, ASME Fluids Engng. Division Summer Meeting, ASME Paper FEDSM97-3272, 1997.
14. P.J. Zwart, A.G. Gerber, and T.A. Belamri, Two-phase flow model for predicting cavitation dynamics, in: ICMF 2004 Int. Conf. on Multiphase Flow Yokohama, Japan, May 30–June 3, 2004. Paper No. 152.
15. Y.S. Chen and S.W. Kim, Computation of turbulent flows using an extended k-e turbulence closure model, NASA CR-179204, 1987.
16. S.G. Cherny, D.V. Chirkov, V.N. Lapin, V.A. Skorospelov, and S.V. Sharov, Numerical Simulation of Flows in Turbine Machinery, Nauka, Novosibirsk, 2006.
17. IEC Standard 60193, IEC: Intern. Electrotechnical Commission, Hydraulic turbines, storage pumps, and pumpturbines, Model acceptance tests, Publication data: 1999-11-01.