Информация о публикации

Просмотр записей
Инд. авторы: Khakimzyanov G.S., Gusev O.I., Beizel S.A., Chubarov L.B., Shokina N.Y.
Заглавие: Simulation of tsunami waves generated by submarine landslides in the black sea
Библ. ссылка: Khakimzyanov G.S., Gusev O.I., Beizel S.A., Chubarov L.B., Shokina N.Y. Simulation of tsunami waves generated by submarine landslides in the black sea // Russian Journal of Numerical Analysis and Mathematical Modelling. - 2015. - Vol.30. - Iss. 4. - P.227-237. - ISSN 0927-6467. - EISSN 1569-3988.
Внешние системы: DOI: 10.1515/rnam-2015-0020; РИНЦ: 24007943; SCOPUS: 2-s2.0-84939206766; WoS: 000359275500003;
Реферат: eng: Numerical technique for studying surface waves appearing under the motion of a submarine landslide is discussed. This technique is based on the application of the model of a quasi-deformable landslide and two shallow water models, namely, the classic (dispersion free) one and the completely nonlinear dispersive model of the second hydrodynamic approximation. Numerical simulation of surface waves generated by a large model landslide on the continental slope of the Black Sea near the Russian coast is performed. It is shown that the dispersion has a significant impact on the picture of propagation of tsunami waves on sufficiently long paths.
Ключевые слова: numerical algorithm; Submarine landslide; dispersion; tsunami waves; The Black Sea;
Издано: 2015
Физ. характеристика: с.227-237
Цитирование:
1. S. Assier-Rzadkiewicz, P. Heinrich, P. C. Sabatier, B. Savoye, and J. F. Bourillet, Numerical modelling of a landslide-generated tsunami: the 1979 Nice event. PureAppl. Geophys. 157 (2000), 1707-1727.
2. J. P. Bardet, C. E. Synolakis, H. L. Davies, F. Imamura, and E. A. Okal, Landslide tsunamis: recent findings and research directions. Pure Appl. Geophys. 160 (2003), 1793-1809.
3. S. A. Beisel, L. B. Chubarov, D. Dutykh, G. S. Khakimzyanov, and N. Yu. Shokina, Simulation of surface waves generated by an underwater landslide in a bounded reservoir. Russ. J. Numer. Anal. Math. Modelling 27 (2012), No. 6, 539-558.
4. S. A. Beisel, L. B. Chubarov, and G. S. Khakimzyanov, Simulation of surface waves generated by an underwater landslide moving over an uneven slope. Russ. J. Numer. Anal. Math. Modelling 26 (2011), No. 1, 17-38.
5. M. J. Castro, M. de la Asuncion, J. Macias, C. Pares, E. D. Fernandez-Nieto, J. M. Gonzalez-Vida, and T. Morales, IFCP Rie-mann solver: application to tsunami modelling using GPUs. In: Numerical Methods for Hyperbolic Equations: Theory and Applications. Int. Conf. to Honour Prof. E. F. Toro. CRC Press, 2013, pp. 237-244.
6. L. B. Chubarov, S.V. Eletskii, Z. I. Fedotova, and G. S. Khakimzyanov, Simulation of surface waves generation by an underwater landslide. Russ. J. Numer. Anal.Math. Modelling 20 (2005), No. 5, 425-437.
7. L. B. Chubarov, G. S. Khakimzyanov, and N. Yu. Shokina, Numerical modelling of surface water waves arising due to movement of underwater landslide on irregular bottom slope. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Computational Science and High Performance ComputingIV, Vol. 115, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 75-91.
8. S. V. Eletskii, Yu. B. Maiorov, V. V. Maksimov, I. S. Nudner, Z. I. Fedotova, M. G. Khazhoyan, G. S. Khakimzyanov, and L. B. Chubarov, Simulation of surface waves generation by a moving part of the bottom down the coastal slope. Comp. Tech. 9 (2004), Part 2, 194-206 (in Russian).
9. F. Enet and S. T. Grilli, Experimental study of tsunami generation by three-dimensional rigid underwater landslides.J. Waterway Port Coastal Ocean Engrg. 133 (2007), No. 6, 442-454.
10. Yu. D. Evsyukov, Distribution of landslide bodies on the continental slope of the north-eastern part of the Black Sea. Izv. North Caucasus Scientific Centre of the Higher School. Natural Sci. 6 (2009), 100-104 (in Russian).
11. Z. I. Fedotova and G. S. Khakimzyanov, Shallow water equations on a movable bottom. Russ. J. Numer. Anal. Math. Modelling 24 (2009), No. 1, 31-41.
12. Z. I. Fedotova and G. S. Khakimzyanov, Nonlinear-dispersive shallow water equations on a rotating sphere. Russ. J. Numer. Anal. Math. Modelling 25 (2010), No. 1, 15-26.
13. Z. I. Fedotova, G. S. Khakimzyanov, and D. Dutykh, On the energy equation of approximate models in the long-wave hydrodynamics. Russ. J. Numer. Anal. Math. Modelling 29 (2014), No. 3, 167-178.
14. E. D. Fernandez-Nieto, F. Bouchut, D. Bresh, M. J. Castro, and A. Mangeney, A new Savage-Hutter type model for submarine avalanches and generated tsunami.J. Comput.Phys.227 (2008), No. 16, 7720-7754.
15. I. A. Garagash, L. I. Lobkovskii, O. R. Kozyrev, and R. Kh. Mazova, Generation and run-up of tsunami waves caused by a submarine landslide. Oceanology 43 (2003), No. 2, 153-161.
16. S. Glimsdal, G. K. Pedersen, C. B. Harbitz, and F. Lovholt, Dispersion of tsunamis: does it really matter? Nat. Hazards Earth Syst. Sci. 13 (2013), 1507-1526.
17. S. T. Grilli, S. Vogelmann, and P. Watts, Development of a 3D numerical wave tank for modelling tsunami generation by underwater landslides. Engrg. Anal. Boundary Elements 26 (2002), 301-313.
18. S. T. Grilli and P. Watts, Tsunami generation by submarine mass failure. I : Modelling, experimental validation, and sensitivity analyses.J. Waterway Port Coastal OceanEngrg. 131 (2005), No. 6, 283-297.
19. O.I. Gusev, On an algorithm for surface waves calculation within the framework of nonlinear dispersive model with a movable bottom. Comp. Tech. 17 (2012), No. 5, 46-64 (in Russian).
20. O.I. Gusev, Algorithm for surface waves calculation above a movable bottom within the frame of plane nonlinear dispersive model. Comp. Tech. 19 (2014), No. 6, 19-41 (in Russian).
21. O.I. Gusev, N. Yu. Shokina, V. A. Kutergin, and G. S. Khakimzyanov, Numerical modelling of surface waves generated by underwater landslide in a reservoir. Comp. Tech. 18 (2013), No. 5, 74-90 (in Russian).
22. V. K. Gusyakov, Z. I. Fedotova, G. S. Khakimzyanov, L. B. Chubarov, and Yu. I. Shokin, Some approaches to local modelling of tsunami wave runup on a coast. Russ. J. Numer. Anal. Math. Modelling 23 (2008), No. 6. 551-565.
23. P. Heinrich, A. Piatanesi, and H. Hebert, Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event. Geophys.J. Intern. 145 (2001), 97-111.
24. M. Ioualalen, S. Migeon, and O. Sardoux, Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures. Geophys. J. Intern. 181 (2010), 724-740.
25. R. A. Kazantsev and V. V. Kruglyakov, Giant landslide on the Black Sea floor. Priroda 10 (1998), 86-87 (in Russian).
26. G. S. Khakimzyanov and M. G. Khazhoyan, Numerical simulation of the interaction between surface waves and submerged obstacles. Russ.J. Numer. Anal.Math.Modelling 19 (2004), No. 1, 17-34.
27. G. S. Khakimzyanov and Yu. I. Shokin, A finite-difference method for calculating surface waves in coastal zone. Russ. J. Numer. Anal. Math. Modelling 8 (1993), No. 6, 461-481.
28. G. S. Khakimzyanov and N. Yu. Shokina, Evaluation of the height of waves generated by an underwater landslide in a confined water reservoir. J. Appl.Mech. Tech. Phys. 53 (2012), No. 5, 690-699.
29. G. S. Khakimzyanov and N. Yu. Shokina, Adaptive grid method for one-dimensional shallow water equations. Comp. Tech. 18 (2013), No. 3, 54-79 (in Russian).
30. J. T. Kirby, F. Shi, B. Tehranirad, J. C. Harris, and S. T. Grilli, Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling 62 (2013), 39-55.
31. E. K. Lindstrom, G. K. Pedersen, A. Jensen, and S. Glimsdal, Experiments on slide generated waves in a 1:500 scale fjord model. Coastal Engrg. 92 (2014), 12-23.
32. P. L.-F. Liu, T.-R. Wu, F. Raichlen, C. E. Synolakis, and J. Borrero, Runup and rundown generated by three-dimensional sliding masses.J. FluidMech. 536 (2005), 107-144.
33. F. Lovholt, G. Pedersen, and G. Gisler, Oceanic propagation of a potential tsunami from the La Palma Island.J. Geophys. Res. 113 (2008), C09026.
34. F. Lovholt, G. Pedersen, and S. Glimsdal, Coupling of dispersive tsunami propagation and shallow water coastal response. Open Oceanogr.J. 4 (2010), 71-82.
35. P. J. Lynett, J. C. Borrero, P. L.-F. Liu, and C. E. Synolakis, Field survey and numerical simulations: a review of the 1998 Papua New Guinea tsunami. PureAppl. Geophys. 160 (2003), 2119-2146.
36. P. J. Lynett and P. L.-F. Liu, A numerical study of submarine-landslide-generated waves and run-up. Proc. R. Soc. A. 458 (2002), 2885-2910.
37. B. G. Pustovitenko and V. E. Kulchitskii, Seismicity of the Black Sea depression. Geophys.J. 13 (1991), No. 1, 14-19 (in Russian).
38. B. Ranguelov, S. Tinti, G. Pagnoni, R. Tonini, F. Zaniboni, and A. Armigliato, The nonseismic tsunami observed in the Bulgarian Black Sea on 7 May 2007: was it due to a submarine landslide? Geophys. Res. Letters 35 (2008), L18613.
39. Yu. I. Shokin, V. V. Babailov, S. A. Beisel, L. B. Chubarov, S. V. Eletskii, Z. I. Fedotova and V. K. Gusyakov, Mathematical modelling in application to regional tsunami warning systems operations. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Computational Science and High Performance Computing III, Vol. 101, Springer-Verlag, Berlin-Heidelberg, 2007, pp. 52-69.
40. Yu. I. Shokin, S. A. Beisel, O. I. Gusev, G. S. Khakimzyanov, L. B. Chubarov, and N. Yu. Shokina, Numerical modelling of dispersive waves generated by landslide motion. Bull. South UralState Univ. Ser. 'MathematicalModelling, Programming, Computer Software' 7 (2014), No. 1, 121-133 (in Russian).
41. Yu. I. Shokin, Z. I. Fedotova, G. S. Khakimzyanov, L. B. Chubarov, and S.A. Beisel, Modelling surfaces waves of generated by a moving landslide with allowance for vertical flow structure. Russ. J. Numer. Anal. Math. Modelling 22 (2007), No. 1, 63-85.
42. N. Yu. Shokina, To the problem of construction of difference schemes on movable grids. Russ. J. Numer. Anal. Math. Mod-elling 27 (2012), No. 6, 603-626.
43. O. N. Solov'eva, S. F. Dotsenko, I. P. Kuzin, and B. V. Levin, Tsunami in the Black Sea: historical events, seismic sources, and features of propagation. Oceanology 44 (2004), No. 5, 638-643.
44. C. E. Synolakis, J.-P. Bardet, J. C. Borrero, H. L. Davies, E. A. Okal, E. A. Silver, S. Sweet, and D. R. Tappin, The slump origin of the 1998 Papua New Guinea tsunami. Proc. R. Soc. A. 458 (2002), 763-789.
45. D. R. Tappin, P. Watts, and S. T. Grilli, The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Natural Hazards Earth System Sci. 8 (2008), 243-266.
46. S. Tinti, E. Bortolucci, and C. Vannini, A block-based theoretical model suited to gravitational sliding. Natural Hazards 16 (1997), 1-28.
47. P. Watts, S. T. Grilli, J. T. Kirby, G.J. Fryer, and D. R. Tappin, Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards Earth System Sci. 3 (2003), No. 5, 391-402.
48. P. Watts, F. Imamura, and S. T. Grilli, Comparing model simulations of three benchmark tsunami generation cases. Sci. Tsunami Hazards 18 (2000), No. 2, 107-123.
49. A. Yalciner, E. Pelinovsky, T. Talipova, A. Kurkin, A. Kozelkov, and A. Zaitsev, Tsunamis in the Black Sea: comparison of the historical, instrumental and numerical data.J. Geophys. Research 109 (2004), No. C12023.