Информация о публикации

Просмотр записей
Инд. авторы: Perego A.M., Tarasov N., Churkin D.V., Turitsyn S.K., Staliunas K.
Заглавие: Pattern Generation by Dissipative Parametric Instability
Библ. ссылка: Perego A.M., Tarasov N., Churkin D.V., Turitsyn S.K., Staliunas K. Pattern Generation by Dissipative Parametric Instability // Physical Review Letters. - 2016. - Vol.116. - Iss. 2. - Art.e028701. - ISSN 0031-9007. - EISSN 1079-7114.
Внешние системы: DOI: 10.1103/PhysRevLett.116.028701; РИНЦ: 27043025; PubMed: 26824573; SCOPUS: 2-s2.0-84954482587; WoS: 000368281600008;
Реферат: eng: Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems. © 2016 American Physical Society.
Ключевые слова: Two-dimensional systems; Spontaneous pattern formation; Pattern Generation; Parametric instabilities; Nonlinear instability; Modulation instabilities; Instability mechanisms; Benjamin-Feir instabilities; Modulation; Stability;
Издано: 2016
Цитирование:
1. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993). RMPHAT 0034-6861 10.1103/RevModPhys.65.851
2. T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967). JFLSA7 0022-1120 10.1017/S002211206700045X
3. D. J. Benney and A. C. Newell, J. Math. Phys. (N.Y.) 46, 133 (1967). JMAPAQ 0097-1421 10.1002/sapm1967461133
4. J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmid, C. S. Liu, and M. N. Rosenbluth, Phys. Fluids 17, 778 (1974). PFLDAS 0031-9171 10.1063/1.1694789
5. V. I. Bespalov and V. I. Talanov, Pis'ma Zh. Eksp. Teor. Fiz. 3, 471 (1966)
6. [V. I. Bespalov and V. I. Talanov JETP Lett. 3, 307 (1966)]. JTPLA2 0021-3640
7. V. E. Zakharov and L. A. Ostrovsky, Physica (Amsterdam) 238D, 540 (2009). PDNPDT 0167-2789 10.1016/j.physd.2008.12.002
8. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2006).
9. M. Faraday, Phil. Trans. R. Soc. London 121, 299 (1831). PTRSAV 0261-0523 10.1098/rstl.1831.0018
10. V. Petrov, Q. Ouyang, and H. L. Swinney, Nature (London) 388, 655 (1997). NATUAS 0028-0836 10.1038/41732
11. F. Melo, P. B. Umbanhowar, and H. L. Swinney, Phys. Rev. Lett. 72, 172 (1994). PRLTAO 0031-9007 10.1103/PhysRevLett.72.172
12. K. Staliunas, S. Longhi, and G. J. de Valcárcel, Phys. Rev. Lett. 89, 210406 (2002); PRLTAO 0031-9007 10.1103/PhysRevLett.89.210406
13. K. Staliunas, S. Longhi, and G. J. de Valcárcel, Phys. Rev. A 70, 011601 (2004). PLRAAN 1050-2947 10.1103/PhysRevA.70.011601
14. P. Engels, C. Atherton, and M. A. Hoefer, Phys. Rev. Lett. 98, 095301 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98.095301
15. M. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, Opt. Lett. 18, 1499 (1993). OPLEDP 0146-9592 10.1364/OL.18.001499
16. J. C. Bronski and J. N. Kutz, Opt. Lett. 21, 937 (1996). OPLEDP 0146-9592 10.1364/OL.21.000937
17. N. Smith and N. J. Doran, Opt. Lett. 21, 570 (1996). OPLEDP 0146-9592 10.1364/OL.21.000570
18. M. Droques, A. Kudlinski, G. Bowmans, G. Martinelli, and A. Mussot, Opt. Lett. 37, 4832 (2012). OPLEDP 0146-9592 10.1364/OL.37.004832
19. F. Kh. Abdullaev, S. A. Darmanyan, S. Bischoff, and M. P. Sørensen, J. Opt. Soc. Am. B 14, 27 (1997). JOBPDE 0740-3224 10.1364/JOSAB.14.000027
20. K. Staliunas, C. Hang, and V. V. Konotop, Phys. Rev. A 88, 023846 (2013). PLRAAN 1050-2947 10.1103/PhysRevA.88.023846
21. M. Conforti, A. Mussot, A. Kudlinski, and S. Trillo, Opt. Lett. 39, 4200 (2014). OPLEDP 0146-9592 10.1364/OL.39.004200
22. M. Centurion, M. A. Porter, Y. Pu, P. G. Kevrekidis, D. J. Frantzeskakis, and D. Psaltis, Phys. Rev. Lett. 97, 234101 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.97.234101
23. I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002). RMPHAT 0034-6861 10.1103/RevModPhys.74.99
24. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.116.028701 for more details on the stability analysis methods, analytical estimation of the instability frequency, and one- and two-dimensional pattern formation.
25. F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato, and S. Wabnitz, Phys. Rev. Lett. 113, 034101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.034101
26. M. Haelterman, S. Trillo, and S. Wabnitz, Opt. Lett. 17, 745 (1992). OPLEDP 0146-9592 10.1364/OL.17.000745
27. S. Pitois, C. Finot, L. Provost, and D. J. Richardson, J. Opt. Soc. Am. B 25, 1537 (2008). JOBPDE 0740-3224 10.1364/JOSAB.25.001537
28. K. Sun, M. Rochette, and L. R. Chen, Opt. Express 17, 10419 (2009). OPEXFF 1094-4087 10.1364/OE.17.010419
29. K. Staliunas and V. J. Sánchez-Morcillo, Transverse patterns in nonlinear optical resonators (Springer, Berlin, 2003).
30. I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013). RMPHAT 0034-6861 10.1103/RevModPhys.85.299
31. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2004).