Информация о публикации

Просмотр записей
Инд. авторы: Voropaeva O.F., Druzhinin O.A., Chernykh G.G.
Заглавие: Numerical simulation of momentumless turbulent wake dynamics in linearly stratified medium
Библ. ссылка: Voropaeva O.F., Druzhinin O.A., Chernykh G.G. Numerical simulation of momentumless turbulent wake dynamics in linearly stratified medium // Journal of Engineering Thermophysics. - 2016. - Vol.25. - Iss. 1. - P.85-99. - ISSN 1810-2328. - EISSN 1990-5432.
Внешние системы: DOI: 10.1134/S1810232816010082; РИНЦ: 26883092; SCOPUS: 2-s2.0-84958999291; WoS: 000370822500008;
Реферат: eng: This paper presents comparison of two numerical models of the momentumless turbulent wake dynamics behind a body of revolution in a linearly stratified medium, namely, the model based on direct (DNS) numerical integration of Navier–Stokes equations in the Oberbeck–Boussinesq approximation and the mathematical model with application of a semi-empirical turbulence model of the third order. The results of calculations by these two models agree with the known experimental data. © 2016, Pleiades Publishing, Ltd.
Ключевые слова: Wakes; Body of revolution; Boussinesq approximations; Model-based OPC; Numerical integrations; Semi-empirical; Stratified medium; Numerical models; Turbulent wake; Numerical methods; Navier Stokes equations; Bodies of revolution; Stokes equations; Turbulence models;
Издано: 2016
Физ. характеристика: с.85-99
Цитирование:
1. Ozmidov, R.V. and Nabatov, V.N., Hydrophysical Model of a Turbulent Wake behind a Seamount, Izv. AN, Ser. FAO, 1992, vol. 28, no. 9, pp. 981–987.
2. Wang, Zh. and Goodman, L., Evolution of the Spatial Structure of a Thin Phytoplankton Layer into a Turbulent Field, Mar. Prog. Ser., 2009, vol. 374, pp. 57–74.
3. Lavery, T.J., Roudnew, B., Seuront, L., Mitchell, J.G., and Middleton, J., Can Whales Mix the Ocean?, Biogeosci. Discuss., 2012, vol. 9, iss. 7, pp. 8387–8403.
4. Schooley, A.H. and Stewart, R.W., Experiments with a Self-Propelled Body Submerged in a Fluid with Vertical Density Gradient, J. Fluid Mech., 1963, vol. 15, pp. 83–96.
5. Witte, A.B., Holographic Interferometry of a Submarine Wake in Stratified Flow, J. Hydronaut., 1972, vol. 6, pp. 114/115.
6. Merrit, C.E., Wake Growth in Stratified Flow, AIAA J., 1974, vol. 12, pp. 940–949.
7. Lin, J.T. and Pao, Y.H., Wakes in Stratified Fluids, Ann. Rev. Fluid Mech., 1979, vol. 11, pp. 317–338.
8. Hassid, S., Collapse of Turbulent Wakes in Stable Stratified Media, J. Hydronaut., 1980, vol. 14, pp. 25–32.
9. Gilreath, H.E. and Brandt, A., Experiments on the Generation of Internal Waves in a Stratified Fluid, AIAA Paper, 1983, vol. 1704, p. 12.
10. Sysoeva, E.Ya. and Chashechkin, Yu.D., Vortex Structure of the Wake of a Sphere in a Stratified Fluid, J. Appl. Mech. Techn. Phys., 1986, vol. 27, iss. 2, pp. 190–196.
11. Hopfinger, E.J., Flor, J.B., Chomaz, J.M., and Bonneton, P., InternalWaves Generated by a Moving Sphere and ItsWake in Stratified Fluid, Exps. Fluids, 1991, vol. 11, pp. 255–261.
12. Lin, Q., Boyer, D.L., and Fernando, J.S., Turbulent Wakes of Linearly Stratified Flow past a Sphere, Phys. Fluids A, 1992, vol. 4, pp. 1687–1696.
13. Chomaz, J.M., Bonneton, P., Butet, A., and Hopfinger, E.J., Vertical Diffusion of the FarWake of a Sphere Moving in a Stratified Fluid, Phys. Fluids A, 1993, vol. 5, pp. 2799–2806.
14. Bonneton, P., Chomaz, J.M., and Hopfinger, E.J., Internal Waves Produced by the Turbulent Wake of a Sphere Moving Horizontally in a Stratified Fluid, J. Fluid Mech., 1993, vol. 254, pp. 23–40.
15. Shishkina, O.D., The Wake Regime Influence on Hydrodynamic Characteristics of the Submerged Sphere in the Stratified Fluid, Preprints of the Fourth Int. Symp. on Stratified Flows, Hopfinger, E., Voisin, B., and Chavand, G., Eds., Grenoble Inst. of Mech., Grenoble, 1994, vol. 3, sess. A5, no. 40.
16. Chashechkin, Yu. D., Internal Waves, Vortices and Turbulence in a Wake past a Bluff Body in a Continuously Stratified Liquid, Preprints of the Fourth Int. Symp. on Stratified Flows, Hopfinger, E., Voisin, B., and Chavand, G., Eds., Grenoble Inst. of Mech., Grenoble, 1994, vol. 2, sess. B4, no. 29.
17. Spedding, G.R., Browand, F.K., and Fincham, A.M., The Structure and Long-Time Evolution of Bluff Body Wakes in a Stable Stratification, Preprints of the Fourth Int. Symp. on Stratified Flows, Hopfinger, E., Voisin, B., and Chavand, G., Eds., Grenoble Inst. of Mech., Grenoble, 1994, vol. 2, sess. B4, no. 196.
18. Voisin, B., Rayonnement des ondes Internes de Gravite. Application aux Corps enMouvement, Ph. D. Thesis, Universitet Pierre etMarie Curie, Paris, 1991.
19. Onufriev, A.T., Turbulent Wake in a Stratified Medium, J. Appl. Mech. Techn. Phys., 1970, vol. 11, iss. 5, pp. 768–772.
20. Lewellen, W.S., Teske, M.E., and Donaldson, C.D., Examples of Variable Density Flows Computed by Second-Order Closure Description of Turbulence, AIAA J., 1976, vol. 14, pp. 382–387.
21. Schetz, J.A., Injection and Mixing in Turbulent Flow, New York: Am. Inst. of Aeronautics and Astronautics, 1980.
22. Danilenko, A.Yu., Kostin, V.I., and Tolstykh, A.I., On an Implicit Algorithm for Computation of Flows of Homogeneous and Inhomogeneous Fluid, Preprint of the Computing Center, Russian Acad. Sci., Moscow, 1985.
23. Chernykh, G.G., Fedorova, N.N., and Moshkin, N.P., Numerical Simulation of TurbulentWakes, Russ. Th. Appl.Mech., 1992, vol. 2, pp. 295–304.
24. Glushko, G.S., Gumilevskii, A.G., and Polezhaev, V.I., Evolution of Turbulent Wakes of Sphere-Shaped Bodies in Stably Stratified Media, Izv. RAN, Ser. Mekh. Zhidk. Gaza, 1994, no. 1, pp. 13–22.
25. Schooley, A.H., Wake Collapse in a Stratified Fluid, Sci., 1967, vol. 157, pp. 421–423.
26. Trokhan, A.M. and Chashechkin, Yu.D., Generation of Internal Waves in Stratified Fluid by an Impulse Hydrodynamic Line Source (two-dimensional problem), in Theory of Diffraction and Propagation of Waves: Abstracts of the VII All-Union Symp. on the Diffraction and Propagation of Waves, Moscow: USSR Acad. Sci., 1977, vol. 3, pp. 186–189.
27. Vasiliev, O.F., Kuznetsov, B.G., Lytkin, Yu.M., and Chernykh, G.G., Development of the Turbulized Fluid Region in Stratified Medium, Proc. Int. Symp. on Stratified Flows, Paper 4, Novosibirsk, Institute of Hydrodynamics, Siberian Branch, USSR Acad. Sci., 1972.
28. Lytkin, Yu.M. and Chernykh, G.G., Flow Similarity with Respect to Froude Density Number and Energy Balance in the Evolution of a TurbulentMixing Zone in a Stratified Medium, in Mathematical Problems of Continuum Mechanics (A82-27485 12-47), Novosibirsk: Institute of Hydrodynamics, USSR Acad. Sci., 1980, pp. 70–89.
29. Voropaeva, O.F., Chashechkin, Yu.D., and Chernykh, G.G., Diffusion of Passive Admixture from a Local Source in a TurbulentMixing Zone, Fluid Dyn., 1997, vol. 32, no. 2, pp. 212–218.
30. Chernykh, G.G. and Voropayeva, O.F., NumericalModeling ofMomentumless TurbulentWake Dynamics in a LinearlyStratified Medium, Comp. Fluids, 1999, vol. 28, no. 3, pp. 281–306.
31. Voropaeva, O.F., Moshkin, N.P., and Chernykh, G.G., InternalWaves Generated by TurbulentWakes behind Towed and Self-Propelled Bodies in a Linearly Stratified Medium, Mat. Model., 2000, vol. 12, no. 1, pp. 77–94.
32. Voropaeva, O.F., Moshkin, N.P., and Chernykh, G.G., Internal Waves Generated by Turbulent Wakes in a Stably Stratified Medium, Dokl. Fiz., 2003, vol. 48, no. 9, pp. 517–521.
33. Moshkin, N.P., Fomina, A.V., and Chernykh, G.G., Numerical Modeling of Dynamics of Turbulent Wake behind Towed Body in the Linearly Stratified Medium, Mat. Model., 2007, vol. 19, no. 1, pp. 29–56.
34. Chernykh, G.G., Fomina, A.V., and Moshkin, N.P., Numerical Models of TurbulentWake Dynamics behind Towed Body in Linearly Stratified Fluid, J. Eng. Therm., 2009, vol. 18, no. 4, pp. 279–305.
35. Moshkin, N.P., Chernykh, G.G., and Fomina, A.V., On the Influence of Small Total Momentum Imbalance on TurbulentWake Dynamics in the Linearly Stratified Fluids, Mat. Model., 2005, vol. 17, no. 1, pp. 19–33.
36. Chernykh, G.G., Moshkin, N.P, and Fomina, A.V., Dynamics of TurbulentWake with Small ExcessMomentum in Stratified Media, Comm. Nonlinear Sci. Numer. Simul., 2009, vol. 14, no. 4, pp. 1307–1323.
37. Voropayeva, O.F., Ilyushin, B.B., and Chernykh, G.G., Numerical Simulation of the Far Momentumless Turbulent Wake in a Linearly Stratified Medium, Dokl. Phys., 2002, vol. 47, no. 10, pp. 762–766.
38. Chernykh, G.G. and Voropayeva, O.F., NumericalModels of the Second and Third Orders for aMomentumless Turbulent Wake Dynamics in a Linearly Stratified Medium, Russ. J. Num. Anal. Math. Model., 2008, vol. 23, no. 6, pp. 539–549.
39. Voropayeva, O.F., Anisotropic Turbulence Decay in a Far Momentumless Wake in a Stratified Medium, Math.Models Comp. Simul., 2009, vol. 1, no. 5, pp. 605–619.
40. Vasiliev, O.F., Voropaeva, O.F., and Chernykh, G.G., NumericalModeling of Anisotropic Decay of a Distant Turbulent Wake behind a Self-Propelled Body in a Linearly Stratified Medium, Dokl. Phys., 2009, vol. 54, no. 6, pp. 301–305.
41. Spedding, G.R., Anisotropy in Turbulence Profiles of Stratified Wakes, Phys. Fluids, 2001, vol. 13, no. 8, pp. 2361–2372.
42. Gourlay, M.J., Arendt, S.C., Fritts, D.C., and Werne, J., Numerical Modeling of Initially TurbulentWakes with NetMomentum, Phys. Fluids, 2001, vol. 13, no. 12, pp. 3782–3802.
43. Spedding, G.R., Vertical Structure in Stratified Wakes with High Initial Froude Number, J. Fluid Mech., 2002, vol. 454, pp. 71–112.
44. Domermuth, D.G., Rottman, J.W., Innis, G.E., and Novikov, E.A., Numerical Simulation of the Wake of a Towed Sphere in aWeakly Stratified Fluid, J. Fluid Mech., 2002, vol. 473, pp. 83–101.
45. Balandina, G.N., Papko, V.V., Sergeev, D.A., and Troitskaya, Yu.I., Evolution of a Far Turbulent Wake past a Towed Body in Stratified Fluid at High Reynolds and Froude Numbers, Izv. RAN, Ser. FAO, 2004, vol. 40, no. 1, pp. 112–127.
46. Meunier, P. and Spedding, G.R., Stratified PropelledWakes, J. Fluid Mech., 2006, vol. 552, pp. 229–256.
47. Druzhinin, O.A., Papko, V.V., Sergeev, D.A., and Troitskaya, Yu.I., Laboratory Numerical and Theoretical Modeling of Flows in a FarWake in Stratified Fluid, Izv. RAN, Ser. FAO, 2006, vol. 42, no. 5, pp. 1–13.
48. Druzhinin, O.A., Internal Wave Generation by a Turbulent Jet in Stratified Fluid, Izv. RAN, Ser. Mekh. Zhidk. Gaza, 2009, no. 2, pp. 46–59.
49. Brucker, K.A. and Sarkar, S., A Comparative Study of Self-Propelled and Towed Wakes in a Stratified Fluid, J. Fluid Mech., 2010, vol. 652, pp. 373–404.
50. De Stadler, M.B., Sarkar, S., and Brucker, K.A., Effect of the Prandtl Number on a Stratified TurbulentWake, Phys. Fluids, 2010, vol. 22, pp. 095102-1–095102-15.
51. De Stadler, M.B. and Sarkar, S., Simulation of a Propelled Wake with Moderate Excess Momentum in a Stratified Fluid, J. Fluid Mech., 2012, vol. 692, pp. 28–52.
52. Gibson, M.M. and Launder, B.E., Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer, J. Fluid Mech., 1978, vol. 86, pp. 491–511.
53. Ilyushin, B.B., Higher-Moment Diffusion in Stable Stratification, in Closure Strategies for Turbulent and Transitions Flows, Launder, B.E. and Sandham, N.D., Eds., Cambridge: Cambridge Univ. Press, 2002, pp. 424–448.
54. Rodi, W., Examples of Calculation Methods for Flow and Mixing in Stratified Fluids, J. Geophys. Res., 1987, vol. 92, no. C5, pp. 5305–5328.
55. Druzhinin, O.A., Collapse and Self-Similarity of Turbulent Jets in Picnocline, Izv. RAN, Ser. Fiz. Atm. Okeana, 2003, vol. 39, no. 5, pp. 697–711.
56. Belotserkovskii, O.M., Chislennoe modelirovanie v mekhanike sploshnykh sred (Numerical Modeling in Continuum Mechanics), Moscow: Nauka, 1984.
57. Fletcher, G.K., Vychislitelnye metody v dinamike zhidkostei (Computational Methods in Fluid Dynamics), Moscow: Mir, 1991, vol. 1.