Информация о публикации

Просмотр записей
Инд. авторы: Chattopadhyay A.K., Nasiev D., Sugavanam S., Tarasov N., Churkin D.V.
Заглавие: Laminar-Turbulent Transition in Raman Fiber Lasers: A First Passage Statistics Based Analysis
Библ. ссылка: Chattopadhyay A.K., Nasiev D., Sugavanam S., Tarasov N., Churkin D.V. Laminar-Turbulent Transition in Raman Fiber Lasers: A First Passage Statistics Based Analysis // Scientific Reports. - 2016. - Vol.6. - Art.28492. - ISSN 2045-2322.
Внешние системы: DOI: 10.1038/srep28492; РИНЦ: 26834758; SCOPUS: 2-s2.0-84976552984; WoS: 000378787900001;
Реферат: eng: Loss of coherence with increasing excitation amplitudes and spatial size modulation is a fundamental problem in designing Raman fiber lasers. While it is known that ramping up laser pump power increases the amplitude of stochastic excitations, such higher energy inputs can also lead to a transition from a linearly stable coherent laminar regime to a non-desirable disordered turbulent state. This report presents a new statistical methodology, based on first passage statistics, that classifies lasing regimes in Raman fiber lasers, thereby leading to a fast and highly accurate identification of a strong instability leading to a laminar-Turbulent phase transition through a self-consistently defined order parameter. The results have been consistent across a wide range of pump power values, heralding a breakthrough in the non-invasive analysis of fiber laser dynamics.
Издано: 2016
Физ. характеристика: 28492
Цитирование:
1. Turitsyna, E. G. et al. The laminar-Turbulent transition in a fibre laser. Nature Photon. 7, 783-786 (2013).
2. Turitsyn, S. K. et al. Optical wave turbulence. Advances in Wave Turbulence 83, 113-164 (2013).
3. Turitsyn, S. K. et al. Random distributed feedback fibre laser. Nature Photon. 4, 231-235 (2010).
4. Headley, C., Mermelstein, M. & Bouteiller, J.-C. in Raman Amplifiers for Telecommunications 2, Springer Series in Optical Sciences, Vol. 90/2. (ed. Islam, M. N.) 353-382 (Springer, New York, 2004).
5. Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2007).
6. Babin, S. A., Churkin, D. V., Ismagulov, A. E., Kablukov, S. I. & Podivilov, E. V. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser. J. Opt. Soc. Am. B 24(8), 1729-1738 (2007).
7. Churkin, D. V., Gorbunov, O. A. & Smirnov, S. V. Extreme value statistics in Raman fiber lasers. Opt. Lett. 36(18), 3617-3619 (2011).
8. Turitsyna, E. G. et al. Optical turbulence and spectral condensate in long fibre lasers. Proc. Roy. Soc. A 468(2145), 2496-2508 (2012).
9. Churkin, D. V., Smirnov, S. V. & Podivilov, E. V. Statistical properties of partially coherent CW fiber lasers. Opt. Lett. 35, 3288-32290 (2010).
10. Churkin, D. V. et al. Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers. Nature Comms. 6, 7004 (2015).
11. Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195, 127-293 (1990).
12. Majumdar, S. N. Persistence in non-equilibrium systems. Current Science 77, 370-375 (1999).
13. Metzler, R. & Klafter, J. The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1-77 (2000).
14. Sanders, L. P., Lomholt, M. A., Lizana, L., Fogelmark, K., Metzler, R. & Ambjörnsson, T. Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: Ageing and ultraslow diffusion. New J. Phys. 16, 113050 (2014).
15. Lin, Y. & Zhang, Z. Mean first-passage time for maximal-entropy random walks in complex networks. Sci. Rep. 4, 5365 (2014).
16. Chattopadhyay, A. K. & Burroughs, N. J. Close contact fluctuations: The seeding of signalling domains in the immunological synapse. Europhys. Lett. 77, 48003 (2007).
17. Bush, D. R. & Chattopadhyay, A. K. Contact time periods in immunological synapse. Phys. Rev. E 90, 042706 (2014).
18. Bush, D. R. & Chattopadhyay, A. K. Temporal dynamics in an immunological synapse: Role of thermal fluctuations in signaling. Phys. Rev. E 92, 012706 (2015).
19. Chattopadhyay, A. K., Nasiev, D. & Flower, D. R. A statistical physics perspective on alignment-independent protein sequence comparison. Bioinformatics 31(15), 2469-2474 (2015).
20. Majumdar, S. N. & Bray, A. J. Persistence with Partial Survival. Phys. Rev. Lett. 81, 2626-2629 (1998).
21. Metzler, R., Oshanin, G. & Redner, S. First Passage Phenomena and Their Applications, Vol. 35 (eds Metzler, R. et al.) (World Scientific, 2014).
22. Gorbunov, O. A., Sugavanam, S. & Churkin, D. V. Revealing statistical properties of quasi-CW fibre lasers in bandwidth-limited measurements. Opt. Express 22, 28071-28076 (2014).
23. de-Gennes, P. The Physics of Liquid Crystals (Oxford University Press, USA, 2002).
24. Mukherjee, P. K. Phase transitions among the rotator phases of the normal alkanes: A review. Phys. Rep. 588, 1-54 (2015).
25. Zemansky, M. W., Dittman, R. H. & Chattopadhyay A. K. (adaptor). Heat and Thermodynamics (Tata McGraw-Hill, 2011).
26. Birkholz, S., Brée, C., Demircan, A. & Steinmeyer, G. Predictability of Rogue Events. Phys. Rev. Lett. 114, 213901 (2015).
27. Erkintalo, M. Rogue waves: Predicting the unpredictable? Nat. Photon. 9, 560-562 (2015).
28. Aragoneses, A. et al. Unveiling Temporal Correlations Characteristic of a Phase Transition in the Output Intensity of a Fiber Laser. Phys. Rev. Lett. 116(3), 033902 (2016).
29. Kalashnikov, V., Sergeyev, S. V., Jacobsen, G., Popov, S. & Turitsyn, S. K. Multi-scale polarisation phenomena. Light Sci. Appl. 5, el6011 (2016).