Информация о публикации

Просмотр записей
Инд. авторы: Skidin A., Shtyrina O.V., Yarutkina I.A., Fedoruk M.P.
Заглавие: Theoretical analysis of saturable absorbtion in passively mode-locked fiber lasers
Библ. ссылка: Skidin A., Shtyrina O.V., Yarutkina I.A., Fedoruk M.P. Theoretical analysis of saturable absorbtion in passively mode-locked fiber lasers // Optics Express. - 2016. - Vol.24. - Iss. 15. - P.17486-17496. - ISSN 1094-4087.
Внешние системы: DOI: 10.1364/OE.24.017486; РИНЦ: 27100837; PubMed: 27464194; SCOPUS: 2-s2.0-84979645623; WoS: 000384715800121;
Реферат: eng: We propose a general analytical method for estimation of the saturable absorber output energy as a function of the input energy. The method is based on a representation of the saturable absorber output energy as a series of powers of the recovery time. We also derive a simplified expression of the saturable absorber output energy that gives a good approximation for large input energies. The analytical results are verified by the numerical simulation. The results have been applied to the particular cases of an input function that include the Gaussian input pulse and the hyperbolic secant input pulse. We show that the analytical results can improve the prediction of the output energy in the fiber lasers. © 2016 Optical Society of America.
Ключевые слова: Passive mode locking; Analytical method; Analytical results; Hyperbolic secant; Input functions; Fiber lasers; Simplified expressions; Saturable absorbers; Recovery time; Gaussian inputs; Passively mode-locked fiber lasers; Hyperbolic functions;
Издано: 2016
Физ. характеристика: с.17486-17496
Цитирование:
1. Z.-R. Lin, C.-K. Liu, and G. Keiser, "Tunable dual-wavelength erbium-doped fiber ring laser covering both C-band and L-band for high-speed communications," Int. J. Light Electron Opt. 123(1), 46-48 (2012).
2. N. Akhmediev and A. Ankiewicz, "Dissipative solitons: from optics to biology and medicine," Lect. Notes Phys. 751 (2008).
3. M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, "Comparative study of ring and random cavities for fiber lasers," Appl. Opt. 53(16), 3501-3507 (2014).
4. F. Zhang and P. L. Chu, "Effect of transmission fiber on chaos communication system based on erbium-doped fiber ring laser," J. Lightwave Technol. 21(12), 3334 (2003).
5. I. A. Yarutkina, O. V. Shtyrina, A. Skidin, and M. P. Fedoruk, "Theoretical study of energy evolution in ring cavity fiber lasers," Opt. Commun. 342, 26-29 (2015).
6. S. K. Turitsyn, "Theory of energy evolution in laser resonators with saturated gain and non-saturated loss," Opt. Express 17(14), 11898-11904 (2009).
7. A. E. Siegman, Lasers, (University Science Books, 1986).
8. H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron. 11(9), 736-746 (1975).
9. F.X. Kärtner, I.D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," IEEE J. Sel. Top. Quantum Electron. 2(3), 540-556 (1996).
10. W. Qiao, Z. Xiaojun, L. Zongsen, W. Yonggang, S. Liqun, and N. Hanben, "Simple method of optical ring cavity design and its applications," Opt. Express, 22(12), 14782-14791 (2014).
11. I. A. Yarutkina, O. V. Shtyrina, M. P. Fedoruk, and S. K. Turitsyn, "Numerical modeling of fiber lasers with long and ultra-long ring cavity," Opt. Express 21(10), 12942-12950 (2013).
12. B. G Bale, O. G. Okhotnikov, and S. K. Turitsyn, "Modeling and technologies of ultrafast fiber lasers" in Fiber Lasers, O. G. Okhotnikov, ed. (Wiley-VCH Verlag GmbH Co., 2012).
13. P. Grelu and N. Akhmediev, "Dissipative solitons for mode-locked lasers," Nat. Photonics 6(2), 84-92 (2012).
14. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007).
15. F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 2, 58-73 (2008).
16. V.L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83(4), 503-510 (2006).
17. X. Liu, "Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity," Opt. Express 17(25), 22401-22416 (2009).
18. A. Martinez and S. Yamashita, "Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes," Opt. Express 19, 6155-6163 (2011).
19. O. Shtyrina, M. Fedoruk, S. Turitsyn, R. Herda, and O. Okhotnikov, "Evolution and stability of pulse regimes in SESAM-mode-locked femtosecond fiber lasers," J. Opt. Soc. Am. B 26(2), 346-352 (2009).
20. O. V. Shtyrina, I. A. Yarutkina, A. Skidin, M. P. Fedoruk, and S. K. Turitsyn, "Impact of the order of cavity elements in all-normal dispersion ring fiber lasers," IEEE Photonics J. 7(2), 1-7 (2015).
21. M. Hercher, "An analysis of saturable absorbers," Appl. Opt. 6(5), 9947-9954 (1967).
22. S. V. Smirnov, S. M. Kobtsev, and S. V. Kukarin, "Linear compression of chirped pulses in optical fibre with large step-index mode area," Opt. Express, 23(4), 3914-3919 (2015).