Информация о публикации

Просмотр записей
Инд. авторы: Bulgakova N.M., Zhukov V.P., Mirza I., Meshcheryakov Y.P., Tomáštík J., Michálek V., Haderka O., Fekete L., Rubenchik A.M., Fedoruk M.P., Mocek T.
Заглавие: Ultrashort-pulse laser processing of transparent materials: Insight from numerical and semi-analytical models
Библ. ссылка: Bulgakova N.M., Zhukov V.P., Mirza I., Meshcheryakov Y.P., Tomáštík J., Michálek V., Haderka O., Fekete L., Rubenchik A.M., Fedoruk M.P., Mocek T. Ultrashort-pulse laser processing of transparent materials: Insight from numerical and semi-analytical models // Proceedings of SPIE - The International Society for Optical Engineering. - 2016. - Vol.9735. - Art.97350N. - ISSN 0277-786X.
Внешние системы: DOI: 10.1117/12.2217585; РИНЦ: 27225877; РИНЦ: 27126210; SCOPUS: 2-s2.0-84981188302; WoS: 000379995000014;
Реферат: eng: Interaction of ultrashort laser pulses with transparent materials is a powerful technique of modification of material properties for various technological applications. The physics behind laser-induced modification phenomenon is rich and still far from complete understanding. We present an overview of our models developed to describe processes induced by ultrashort laser pulses inside and on the surface of bulk glass. The most sophisticated model consists of two parts. The first part solves Maxwell's equations supplemented by the rate and hydrodynamics equations for free electrons. The model resolves spatiotemporal dynamics of free-electron population and yields the absorbed energy map. The latter serves as an initial condition for thermoelastoplastic simulations of material redistribution. The simulations performed for a wide range of irradiation conditions have allowed to clarify timescales at which modification occurs after single laser pulses. Simulations of spectrum of laser light scattered by laser-generated plasma revealed considerable blueshifting which increases with pulse energy. To gain insight into temperature evolution of a glass material under the surface irradiation conditions, we employ a model based on the rate equation describing free electron generation coupled with the energy equations for electrons and lattice. Swift heating of electron and lattice subsystems to extremely high temperatures at fs timescale has been found at laser fluences exceeding the threshold fluence by 2-3 times that can result in efficient bremsstrahlung emission from the irradiation spot. The mechanisms of glass ablation with ultrashort laser pulses are discussed by comparing with the experimental data. Finally, a model is outlined, developed for multi-pulse irradiation regimes, which enables gaining insight into the roles of defects and heat accumulation. Copyright © 2016 SPIE.
Ключевые слова: Laser materials processing; Technological applications; Spatio-temporal dynamics; Multi-pulse irradiation; Modification of materials; Laser induced modification; Laser generated plasmas; Bremsstrahlung emission; Ablation thresholds; Ultrashort pulses; Ultrafast lasers; Plasma diagnostics; Models; Microelectronics; Maxwell equations; Manufacture; Laser pulses; Laser applications; Laser ablation; Irradiation; Glass; Electrons; Dielectric materials; Ablation; modeling; laser-induced modification; femtosecond laser irradiation; dielectrics; ablation threshold;
Издано: 2016
Конференция: Название: Conference on Laser Applications in Microelectronic and Optoelectronic Manufacturing XXI
Аббревиатура: LAMOM-2016
Город: San Francisco
Страна: USA
Даты проведения: 2016-02-15 - 2016-02-18
Ссылка: http://proceedings.spiedigitallibrary.org/volume.aspx?volumeid=17582
Цитирование:
1. Davis, K. M., Miura, K., Sugimoto, N., and Hirao, K., "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
2. Stuart, B. C., Feit, M. D., Rubenchik, A. M., Shore, B. W., and Perry, M. D., "Nanosecond to femtosecond laser induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
3. Glezer, E. N. and Mazur, E., "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
4. Homoelle, D., Wielandy, S., Gaeta, A. L., Borrelli, N. F., and Smith, C., "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
5. Schaffer, C. B., Brodeur, A., Garca, J. F., and Mazur, E., "Micromachining bulk glass by use of femtosecond laser pulses with nanoJoule energy," Opt. Lett. 26, 93-95 (2001).
6. Tzortzakis, S., Sudrie, L., Franko, M., Prade, B., Mysrowicz, A., Couairon, A., and Berge, L., "Self-focusing of fewcycle light pulses in dielectric media", Phys. Rev. Lett. 87, 213902 (2001).
7. Streltsov, A. M. and Borrelli, N. M., "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19, 2496-2504 (2002).
8. Will, M., Nolte, S., Chichkov, B. N., and Tünnermann, A., "Optical Properties of Waveguides Fabricated in Fused Silica by Femtosecond Laser Pulses," Appl. Opt. 41, 4360-4364 (2002).
9. Osellame, R., Taccheo, S., Marangoni, M., Ramponi, R., Laporta, P., Polli, D., De Silvestri, S., and Cerlullo, G., "Femtosecond writing of active optical waveguides with astigmatically shaped beams", J. Opt. Soc. Am. B 20, 1559-1567 (2003).
10. Florea, C. and Winick, K. A., "Fabrication and Characterization of Photonic Devices Directly Written in Glass Using Femtosecond Laser Pulses," J. Lightwave Technol. 21, 246-253 (2003).
11. Gattass, R., and Mazur, E., "Femtosecond laser micromachining in transparent materials," Nature Photon. 2, 219-225 (2008).
12. Mishchik, K., D'Amico, C., Velpula, P. K., Maclair, C., Boukenter, A., Ouerdane, Y., and Stoian, R. "Ultrafast laser induced electronic and structural modifications in bulk fused silica," J. Appl. Physics 114, 133502 (2013).
13. Zimmermann, F., Plech, A., Richter, S., Tünnermann, A., and Nolte, S., "On the rewriting of ultrashort pulse-induced nanogratings," Opt. Lett. 40, 2049-2052 (2015).
14. Derrien, T. J.-Y., Koter, R., Krüger, J., Höhm, S., Rosenfeld, A., and Bonse, J., "Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water," J. Appl. Phys. 116, 074902 (2014).
15. Buividas, R., Mikutis M., and Juodkazis, S., "Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances," Prog. Quantum Electron. 38(3), 119-156 (2014).
16. Gamaly, E. G., Vailionis, A., Mizeikis, V., Yang, W., Rode, A. V., and Juodkazis, S., "Warm dense matter at the bench top: Fs-laser-induced confined micro-explosion," High Energy Density Physics 8, 13-17 (2012).
17. Bulgakova, N. M., Zhukov, V. P., Meshcheryakov, Y. P., Gemini, L., Brajer, J., Rostohar, D., and Mocek, T., "Pulsed laser modification of transparent dielectrics: What can be foreseen and predicted in numerical experiments," J. Opt. Soc. Am. B 31(11), C8-C14 (2014).
18. Kazansky, P. G., Yang, W., Bricchi, E., Bovatsek, J., Arai, A., Shimotsuma, Y., Miura, K., and Hirao, K., "'Quill' writing with ultrashort light pulses in transparent materials," Appl. Phys. Lett. 90, 151120 (2007)
19. Vitek, D. N., Block, E., Bellouard, Y., Adams, D. E., Backus, S., Kleinfeld, D., Durfee, C. G., and Squier, J. A., "Spatiotemporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials," Opt. Express 18, 24673-24678 (2010).
20. Gaeta, A. L., "Catastrophic collapse of ultrashort pulses," Phys. Rev. Lett. 84, 3582-3585 (2000).
21. Couairon, A. and Mysyrowicz, A., "Femtosecond filamentation in transparent media," Phys. Rep. 441, 47-189 (2007).
22. Burakov, I. M., Bulgakova, N. M., Stoian, R., Mermillod-Blondin, A., Audouard, E., and Rosenfeld, A., "Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses," J. Appl. Phys. 101, 043506 (2007).
23. Dostovalov, A.V., Wolf, A.A., Mezentsev, V.K., Okhrimchuk, A.G., amd Babin, S.A., "Quantitative characteriazation of energy absorption in femtosecond laser micro-modification of fused silica," Opt. Express 23, 32541-32547 (2015).
24. Mézel, C., Hallo, L., Bourgeade, A., Hébert, D., Tikhonchuk, V. T., Chimier, B., Nkonga, B., Schurtz, G., and Travaillé, G., "Formation of nanocavities in dielectrics: A self-consistent modeling," Phys. Plasmas 15, 093504 (2008).
25. Popov, K. I., McElcheran, C., Briggs, K., Mack, S., and Ramunno, L., "Morphology of femtosecond laser modification of bulk dielectrics, " Opt. Express 19, 271-282 (2010).
26. Schmitz, H., and Mezentsev, V., "Full-vectorial modeling of femtosecond pulses for laser inscription of photonic structures," J. Opt. Soc. Am. B 29, 1208-1217 (2012).
27. Bulgakova, N. M., Zhukov, V. P., and Meshcheryakov, Yu. P., "Theoretical treatments of ultrashort pulse laser processing of transparent materials: Towards understanding the volume nanograting formation and 'quill' writing effect," Appl. Phys. B 113, 437-449 (2013).
28. Bulgakova, N. M., Zhukov, V. P., Sonina, S. V., and Meshcheryakov, Yu. P., "Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?" J. Appl. Phys. 118, 233108 (2015).
29. Quéré, F., Guizard, S., and Martin, P. "Time-resolved study of laser-induced breakdown in dielectrics," Europhys. Lett. 56, 138 (2001).
30. Temnov, V. V., Sokolowski-Tinten, K., Zhou, P., El-Khamhawy, A., and von der Linde, D., "Multiphoton ionization in dielectrics: Comparison of circular and linear polarization," Phys. Rev. Lett. 97, 237403 (2006).
31. Puerto, D., Siegel, J., Gawelda, W., Galvan-Sosa, M., Ehrentraut, M., Bonse, J., and Solis, J., "Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics," J. Opt. Soc. Am. B 27, 1065-1076 (2010).
32. Du, D., Liu, X., Korn, G., Squier, J., and Mourou, G., "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
33. Lenzner, M., Krausz, J., Krüger, J., Kautek, W., "Photoablation with sub-10 fs laser pulses," Appl. Surf. Sci. 154-155, 11-16 (2000).
34. Jiang, L., Tsai, H.-L., "A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics," J. Appl. Phys. 104, 093101 (2008).
35. Chimier, B., Utéza, O., Sanner, N., Sentis, M., Itina, T., Lassonde, P., Légaré, F., Vidal, F., and Kieffer, J. C., "Damage and ablation thresholds of fused-silica in femtosecond regime," Phys. Rev. B 84, 094104 (2011).
36. Hu, H., Wang, X., and Zhai, H., "High-fluence femtosecond laser ablation of silica glass: effects of laser-induced pressure," J. Phys. D: Appl. Phys. 44, 135202 (2011).
37. Eaton, S. M., Zhang, H., Herman, P. R., Yoshino, F., Shah, L., Bovatsek, J., and Arai, A. Y., "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Opt. Express, 13, 4708-4716 (2005).
38. Miyamoto, I., Cvecek, K., Okamoto, Y., and Schmidt, "Internal modification of glass by ultrashort laser pulse and its application to microwelding," App. Phys. A 114, 187-208 (2014).
39. Sun, M., Eppelt, U., Schulz, W., and Zhu., J., "Mechanism of internal modification in bulk borosilicate glass with picosecond laser pulses at high repetition rate," Proc. SPIE 9532, 953214 (2015).
40. Caulier, O.D., Mishchik, K., Chimier, B., Skupin, S., Bourgeade, A., Leger, C. J., Kling, R., Honninger, C., Lopez, J., Tikhonchuk, V., and Duchateaux, G., "Femtosecond laser pulse train interaction with dielectric materials," Appl. Phys. Lett. 107, 181110 (2015).
41. Peng, J., Grojo, D., Rayner, D. M., and Corkum, P. B., "Control of energy deposition in femtosecond laser dielectric interactions," Appl. Phys. Lett. 102, 161105 (2013).
42. Grojo, D., Gertsvolf, M., Lei, S., Barillot, T., Rayner, D. M., and Corkum, P. B., "Exciton-seeded multiphoton ionization in bulk SiO2," Phys. Rev. B 81, 212301 (2010).
43. Petite, G., Guizard, S., Martin, P., and Quéré, F., "Comment on 'Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics'," Phys. Rev. Lett. 83, 5182 (1999).
44. Timoshenko, S. P., [Course of Theory of Elasticity], Naukova Dumka, Kiev, in Russian (1972).
45. Meshcheryakov, Yu. P., Shugaev, M. V., Mattle, T., Lippert, T., and Bulgakova, N. M., "Role of thermal stresses on pulsed laser irradiation of thin films under conditions of mucrobump formation ond nonvaporization forward transfer," Appl. Phys. A 113, 521 (2013).
46. Mermillod-Blondin, A., Mentzel, H., and Rosenfeld, A., "Time-resolved microscopy with random lasers," Opt. Lett. 38, 4112-4115 (2013).
47. Bellouard, Y., and Hongler, M.-O., "Femtosecond-laser generation of self-organized bubble patterns in fused silica," Opt. Express, 19, 6807-6821 (2011).
48. Hardy, S. C., "The motion of bubbles in a vertical temperature gradient," J. Colloid Interface Sci. 69, 157-162 (1979).
49. Sakakura, M., Terazima, M., Shimotsuma, Y., Miura, K., and Hirao, K., "Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse," J. Appl. Phys. 109, 023503 (2011).
50. Asada, T., Tamaki, T., Nakazumi, M., Ohmura, E., and Itoh, K., "Laser-induced structural modifications inside glass using a femtosecond laser and a CO2 laser,"J. Laser Micro/Nanoeng. 9, 174-179 (2014).
51. Shimizu, M., Sakakura, M., Ohnishi, M., Shimotsuma, Y., Nakaya, T., Miura, K., and Hirao, K., " Mechanism of heatmodification inside a glass after irradiation with high-repetition rate femtosecond laser pulses," J. Appl. Phys. 108, 073533 (2010).
52. Yablonovitch, E., "Self-phase modulation and short-pulse generation from laser-breakdown plasmas," Phys. Rev. A 10, 1888-1895 (1974).
53. Wood, Wm. M., Siders, C. W., and Downer, M. C., "Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting," Phys. Rev. Lett. 67, 3523-3526 (1991).
54. Duchateau, G. and Bourgeade, A., "Influence of the time-dependent pulse spectrum on ionization and laser propagation in nonlinear optical materials," Phys. Rev. A 89, 053837 (2014).
55. Ristau, D., [Laser-Induced Damage in Optical Materials], Boca Raton, Fla., CRC Press, Taylor & Francis Group (2014).
56. Haahr-Lillevang, L., Wædegaard, K., Sandkamm, D. B., Mouskeftaras, A., Guizard, S., Balling, P., "Short-pulse laser excitation of quartz: experiments and modelling of transient optical properties and ablation," Appl. Phys. A 120, 1221-1227 (2015).
57. Schiffrin, A., Paasch-Colberg, T., Karpowicz, N., Apalkov, V., Gerster, S., Mühlbrandt, S., Korbman, M., Reichert, J., Schultze, M., Holzner, S., Barth, J. V., Kienberger, R., Ernstorfer, R., Yakovlev, V. S., Stockman, M. I., and Krausz, F., "Optical-field-induced current in dielectrics," Nature 493, 70-74 (2013).
58. Bulgakova, N. M., Stoian, R., Rosenfeld, A., Hertel, I. V., Marine, W., and Campbell, E. E. B., "A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion," Appl. Phys. A 81, 345-356 (2005).
59. Bulgakova, N. M., Stoian, R, and Rosenfeld, A., "Laser-induced modification of transparent crystals and glasses," Quantum Electron. 40, 966-985 (2010).
60. Burakov, I. M., Bulgakova, N. M., Stoian, R., Rosenfeld, A., and Hertel, I. V., "Theoretical investigations of material modification using temporally shaped femtosecond laser pulses," Appl. Phys. A 81, 1639-1645 (2005).
61. Kaiser, A., Rethfeld, B., Vicanek, M., and Simon G. "Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses," Phys. Rev. B, 61, 11437-11449 (2000).
62. Martin, P., Guizard, S., Daguzan, Ph., Petite, G., D'Oliveira, P., Maynadier P., and Pedrix M., "Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals," Phys. Rev. B 55, 5799-5810 (1997).
63. Couairon, A., Sudrie, L., Franco, M., Prade, B., and Mysyrowicz, A., "Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses," Phys. Rev. B 71,125435 (2005).
64. Geoffroy, G., Duchateau, G., Fedorov, N., Martin, P., and Guizard, S., "Influence of electron Coulomb explosion on photoelectron spectra of dielectrics irradiated by femtosecond laser pulses," Las. Phys. 24, 086101 (2014).
65. Artsimovich, L. A. and Sagdeev, R.Z., [Plasma Physics for Physicists], Atomizdat, Moscow, in Russian (1979).
66. Bulgakova, N. M., Evtushenko, A. B., Shukhov, Yu. G., Kudryashov, S. I., and Bulgakov, A. V., "Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses," Appl. Surf. Sci. 257, 10876-10882 (2011).
67. Karim, E. T., Wu, C., and Zhigilei, L. V., "Molecular dynamics simulations of laser-materials interactions: General and material-specific mechanisms of material removal and generation of crystal defects," Springer Series in Materials Science 195, 27-49 (2014).
68. Bulgakova, N. M., Bulgakov, A. V., Zhukov, V. P., Marine, W., Vorobyev, V. Y., Guo, C., "Charging and plasma effects under ultrashort pulsed laser ablation," Proc. SPIE 7005, 70050C (2008).
69. Bulgakova, N. M. and Bulgakov, A. V., "Comment on 'Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum'," Phys. Rev. Lett. 101, 099701 (2008).
70. Sakakura, M., Shimizu, M., Shimotsuma, Y., Miura, K, and Hirao, K, "Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses," Appl. Phys. Lett. 93, 231112 (2008).
71. Rayner, D. M., Naumov, A., and Corkum, P. B., "Ultrashort pulse non-linear optical absorption in transparent media," Opt. Express 13, 3208-3217 (2005).
72. Itoh, N., Shimizu-Iwayama, T., and Fujita, T., "Excitons in crystalline and amorphous SiO2: formation, relaxation and conversion to Frenkel pairs," J. Non-Cryst. Solids 179, 194-201 (1994).
73. Guizard, S., Martin, P., D'Oliveira, P., and Maynadier, P., "Time-resolved study of laser-induced colour centres in SiO2," J. Phys.: Condens. Matter 8, 1281-1290 (1996).
74. Richter, S., Jia, F., Heinrich, M., Döring, S., Peschel, U., Tünnermann, A., and Nolte, S., "The role of self-trapped excitons and defects in the formation of nanogratings in fused silica," Opt. Lett., 37, 482-484 (2012).
75. Schenker, R. E. and Oldham, W. G., "Ultraviolet-induced densification in fused silica," J. Appl. Phys. 82, 1065-1071 (1997).
76. Vigouroux, J. P., Duraud, J. P., Le Moel, A., Le Gressus, C., and Griscom, D. L., "Electron trapping in amorphous SiO2 studied by charge buildup under electron bombardment," J. Appl. Phys. 57, 5139-5144 (1985).
77. Kazansky, P. G., Berezna, M., Gecevicius, M., Corbari, C., Shimotsuma, Y., Sakakura, M., Miura, K., Hirao, K., and Bellouard, Y., "Phase transition induced by ultrafast laser writing in transparent materials," in: [CLEO:2011-Laser Applications to Photonic Applications, OSA Technical Digest (CD)], Optical Society of America, paper JTuI106 (2011).