Информация о публикации

Просмотр записей
Инд. авторы: Kharenko D.S., Bednyakova A.E., Podivilov E.V., Fedoruk M.P., Apolonski A.A., Babin S.A.
Заглавие: Mode-locked fiber laser with cascaded generation of coherent Raman dissipative solitons
Библ. ссылка: Kharenko D.S., Bednyakova A.E., Podivilov E.V., Fedoruk M.P., Apolonski A.A., Babin S.A. Mode-locked fiber laser with cascaded generation of coherent Raman dissipative solitons // Proceedings of SPIE - The International Society for Optical Engineering. - 2016. - Vol.9728. - Art. 972836. - ISSN 0277-786X.
Внешние системы: DOI: 10.1117/12.2213010; РИНЦ: 27070779; SCOPUS: 2-s2.0-84978663233; WoS: 000391388500078;
Реферат: eng: We experimentally demonstrate a cascaded generation of a conventional dissipative soliton (DS) at 1020 nm and Raman dissipative solitons (RDS) of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity. The generated high-energy pulses are shown to be linearly-chirped and compressible to 200-300 fs durations for all wavelengths. Moreover, the pulses are mutually coherent that has been confirmed by efficient coherent combining exhibiting ∼75 fs and <40 fs interference fringes within the combined pulse envelope of a DS with the first-order RDS and the second-order RDS respectively. The numerical simulation was performed with sinusoidal (soft) and step-like (hard) spectral filters and took into account the discreetness of the laser elements. Shown that even higher degree of coherence and shorter pulses could be achieved with hard spectral filtering. This approach opens the door towards cascaded generation of multiple coherent dissipative solitons in a broad spectral range (so-called dissipative soliton comb). The demonstrated source of coherent dissipative solitons can improve numerous areas such as frequency comb generation, pulse synthesis, biomedical imaging and the generation of coherent mid-infrared supercontinuum. © 2016 SPIE.
Ключевые слова: Mode-locked fiber lasers; Spectral filtering; Raman lasers; Mode-locked laser; Mid-infrared supercontinuum; Interference fringe; Dissipative solitons; Degree of coherence; Biomedical imaging; Solitons; Pulse generators; Medical imaging; Locks (fasteners); Laser applications; Fibers; Fiber lasers; Raman laser; Raman dissipative soliton; Mode-locked lasers; Fiber lasers; Dissipative solitons;
Издано: 2016
Физ. характеристика: 972836
Цитирование:
1. Grelu, P. and Akhmediev, N. N., "Dissipative solitons for mode-locked lasers," Nat. Photonics 6(2), 84-92 (2012).
2. Renninger, W. H. and Wise, F. W., "Dissipative soliton fiber laser," in [Fiber Lasers], Okhotnikov, O. G., ed., 97-134, Wiley (2012).
3. Kalashnikov, V. L., Podivilov, E., Chernykh, A., Naumov, S., Fernandez, A., Graf, R., and Apolonski, A., "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217-217 (2005).
4. Kharenko, D. S., and Podivilov., E. V., Apolonski, A. A., and Babin, S. A., "20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator," Opt. Lett. 37(19), 4104-4106 (2012).
5. Babin, S. A., and Podivilov., E. V., Kharenko, D. S., Bednyakova, A. E., and Fedoruk., M. P., Kalashnikov, V. L., and Apolonski, A. A., "Multicolour nonlinearly bound chirped dissipative solitons," Nat. Commun. 5, 4653 (2014).
6. Kharenko, D. S., and Bednyakova., A. E., Podivilov, E. V., Fedoruk, M. P., and Apolonski., A. A., Babin, S. A., "Feedback-controlled Raman dissipative solitons in a fiber laser," Opt. Express 23(2), 1857-1862 (2015).
7. de Matos, C. J. S., Popov, S. V., Taylor, J. R., "Short-pulse, all-fiber, Raman laser with dispersion compensation in a holey fiber.," Opt. Lett. 28(20), 1891-1893 (2003).
8. Aguergaray, C., Méchin, D., Kruglov, V., Harvey, J. D., "Experimental realization of a mode-locked parabolic Raman fiber oscillator.," Opt. Express 18(8), 8680-8687 (2010).
9. Chamorovskiy, A., Rantamäki, A., Sirbu, A., Mereuta, A., Kapon, E., Okhotnikov, O. G., "1.38-m mode-locked Raman fiber laser pumped by semiconductor disk laser.," Opt. Express 18(23), 23872-23877 (2010).
10. Castellani, C. E. S., Kelleher, E. J. R., Travers, J. C., Popa, D., Hasan, T., Sun, Z., Flahaut, E., and Ferrari., A. C., Popov, S. V., and Taylor, J. R., "Ultrafast Raman laser mode-locked by nanotubes," Opt. Lett. 36(20), 3996 (2011).
11. Churin, D., Olson, J., Norwood, R. A., Peyghambarian, N., and Kieu, K., "High-power synchronously pumped femtosecond Raman fiber laser," Opt. Lett. 40(11), 2529 (2015).
12. Ozgören, K. and Ilday, F. O., "All-fiber all-normal dispersion laser with a fiber-based Lyot filter.," Opt. Lett. 35(8), 1296-1298 (2010).
13. Zlobina, E. A., and Kharenko., D. S., Kablukov, S. I., and Babin, S. A., "Four wave mixing of conventional and Raman dissipative solitons from single fiber laser," Opt. Express 23(13), 16589 (2015).
14. Treacy, E., "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5(9), 454-458 (1969).
15. Bellini, M. and Hänsch, T. W., "Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer.," Opt. Lett. 25(14), 1049-1051 (2000).
16. Dudley, J., Gu, X., Xu, L., Kimmel, M., Zeek, E., O'Shea, P., Trebino, R., Coen, S., and Windeler, R., "Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments.," Opt. Express 10(21), 1215-1221 (2002).
17. Dudley, J. and Coen, S., "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8(3), 651-659 (2002).
18. Pupeza, I., Sánchez, D., Zhang, J., Lilienfein, N., Seidel, M., Karpowicz, N., Paasch-Colberg, T., Znakovskaya, I., Pescher, M., Schweinberger, W., Pervak, V., Fill, E., Pronin, O., Wei, Z., Krausz, F., Apolonski, A., and Biegert, J., "High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate," Nat. Photonics 9(11), 721-724 (2015).