Информация о публикации

Просмотр записей
Инд. авторы: Zakharov Y.N., Dolgov D.A., Shokin Y.I.
Заглавие: Numerical simulation of the performance of an artificial heart valve
Библ. ссылка: Zakharov Y.N., Dolgov D.A., Shokin Y.I. Numerical simulation of the performance of an artificial heart valve // Russian Journal of Numerical Analysis and Mathematical Modelling. - 2016. - Vol.31. - Iss. 4. - P.229-238. - ISSN 0927-6467. - EISSN 1569-3988.
Внешние системы: DOI: 10.1515/rnam-2016-0023; РИНЦ: 27140562; SCOPUS: 2-s2.0-84983558959; WoS: 000380760600005;
Реферат: eng: The present paper is focused on the mathematical model describing the dynamics of an artificial heart valve and the method of its numerical solution. The results of performance simulation are presented for the tricuspid valve of perfect form and the biological prosthesis 'Uniline'. © 2016 Walter de Gruyter GmbH, Berlin/Boston 2016.
Ключевые слова: Artificial heart; Viscous incompressible fluids; Tricuspid valve; Performance simulation; Numerical solution; Immersed boundary methods; Artificial heart valves; Turbulent flow; Numerical methods; Heart valve prostheses; Computational fluid dynamics; Bioinformatics; Viscous incompressible fluid; immersed boundary method; artificial heart valve; Numerical models;
Издано: 2016
Физ. характеристика: с.229-238
Цитирование:
1. A. H. Association, Heart Disease and Stroke Statistics. URL: https://www.heart.org/idc/groups/ahamah-public/@wcm /@sop/@smd/documents/downloadable/ucm-470704.pdf (2015).
2. O. M. Belotserkovskii, Numerical Modelling in Solid Mechanics. Nauka, Moscow, 1984 (in Russian).
3. M. Black et al. A three-dimensional analysis of a bioprosthetic heart valve. J. Biomech. 24 (1991), 793-801.
4. L. A. Bokeriya, I. I. Skopin, M. A. Sazonov, and E. N. Tumaev, Mechanical stress in leaflets of a mitral valve and bioprosthesis in mitral position. Influence of geometry of fibrous ring on the stress value at leaflets. Clinical Physiology of Circulation. A. N. Bakoulev Scientific Center for Cardiovascular Surgery of the RAMS 2 (2008), 73-80.
5. D. A. Dolgov and Yu. N. Zakharov, Simulation of motion of a viscous heterogeneous fluid in large blood vessels. Vestnik KemGU 62 (2015), 30-34 (in Russian).
6. D. Dolgov and Y. Zakharov, Mathematical modelling of artificial heart valve performance. Stability and Control Processes. In memory of V. I. Zubov (SCP) (2015), 518-521.
7. D. C. R. Institute, Adult Cardiac Surgery Database, Executive Summary. URL: http://www.sts.org/sites/default/-les/documents/2015Harvest2-ExecutiveSummary.pdf (2015).
8. B. E. Grifith, Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Engrg. 28 (2012), 317-345.
9. E. E. Gummel, H. Milosevic, V. V. Raguling, Yu. N. Zakharov, and A. I. Zimin, Motion of viscous inhomogeneous incompressible fluid of variable viscosity. Zbornik radova konferencije MIT (2013), 2013-2014.
10. C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed, The Mechanics of the Circulation. Oxford Univ. Press, New York- Toronto, 1978.
11. H. S. Kim, Nonlinear multi-scale anisotropic material and structural models for prosthetic and native aortic heart valves. Georgia Inst. Technol. 2009.
12. K. Yu. Klyshnikov, E. A. Ovcharenko, D. A. Maltsev, and I. Yu. Zhuravleva, Comparative characteristics of hydrodynamic indicators of Uniline and Pericor heart valve bioprostheses. Clinical Physiol. Circul. (2013), 45-51.
13. X. Ma, H. Gao, B. B. Grifith, C. Berry, and X. Luo, Image-based fluid-structure interaction model of the human mitral valve. Computers & Fluids 71 (2013), 417-425.
14. C. S. Peskin, The immersed boundary method. Acta Numerica 11 (2002), 479-517.
15. C. A. Taylor, T. J. Hughes, and C. K. Zarins, Finite element modelling of blood flow in arteries. Comp. Methods Appl. Mech. Engrg. 158 (1998), 155-196.
16. R. L. Whitmore, Rheology of the Circulation. Pergamon, 1968.
17. N. N. Yanenko, The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables. Springer-Verlag, Berlin, 1971.
18. Y. Zhang and C. Bajaj, Finite Element Meshing for Cardiac Analysis. Univ. of Texas at Austin, ICES Technical Report, 2004.