Информация о публикации

Просмотр записей
Инд. авторы: Berendeev E.A., Dudnikova G.I., Efimova A.A., Ivanov A.V., Vshivkov V.A.
Заглавие: Computer simulation of cylindrical plasma target trap with inverse magnetic mirrors
Библ. ссылка: Berendeev E.A., Dudnikova G.I., Efimova A.A., Ivanov A.V., Vshivkov V.A. Computer simulation of cylindrical plasma target trap with inverse magnetic mirrors // Fourth International Symposium on Negative Ions, Beams and Sources (NIBS 2014). - 2016. - Vol.1771. - Art.030009. - ISBN 978-0-7354-1297-2. - ISSN 0094-243X.
Внешние системы: DOI: 10.1063/1.4964165; РИНЦ: 27587614; SCOPUS: 2-s2.0-84994144914; WoS: 000392692100012;
Реферат: eng: Computer simulation of dynamic of plasma target for highly efficient neutralization of powerful negative ion beams is considered. The plasma is confined within a magnetic trap with multipole magnetic walls. Mathematical model is based on the Boltzmann equation for the distribution functions for ions and electrons and system of the Maxwell's equations for the self-consistent electromagnetic fields. The combination of the modified PIC-method in the cylindrical R-Z coordinates and the Monte-Carlo methods is used to solve these equations. The complex nature of the processes studied, and also the need of calculation of trajectories of billions of particles required the use scalable parallel algorithm. The use of modern supercomputers has allowed to calculate plasma dynamics, to determine plasma streams both on the walls of the trap and through end holes. © 2016 Author(s).
Издано: 2016
Физ. характеристика: 030009
Конференция: Название: 4th International Symposium on Negative Ions, Beams and Sources
Аббревиатура: NIBS-2014
Город: Garching
Страна: Germany
Даты проведения: 2014-10-06 - 2014-10-10
Цитирование:
1. V. M. Kulygin, A. A. Skovoroda, V. A. Zhil'tsov, Plasma Devices and Operations 6, 135-147 (1998). 10.1080/10519999808226632
2. V. Kulygin, I. Moskalenko, A. Spitsyn, A. Skovoroda, S. Yanchenkov, V. Zhiltsov, Proceedings 4th IAEA Technical Meeting. 2005.-Padova (Italy). 1-12 (2005).
3. Y. Takeiri, O. Kaneko, K. Tsumori, Y. Oka, K. Ikeda, M. Osakabe, K. Nagaoka, E. Asano, T. Kondo, M. Sato, M. Shibuya, Nuclear Fusion 46, 199-210 (2006). 10.1088/0029-5515/46/6/S01
4. G.I. Dimov, G.V. Roslyakov, Nuclear Fusion 15, 551-553 (1975). 10.1088/0029-5515/15/3/021
5. G.I. Dimov, A.V. Ivanov, Transactions of the Fusion Science and Technology 111-114 (2013).
6. Y. A. Berezin and V. A. Vshivkov, Particles method in the dynamics of a rarefied plasma (Novosibirsk, Nayka, 1980).
7. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (CRC Press, Boca Raton, Florida, USA, 1988).
8. C. K. Birdsall, IEEE Transactions on Plasma Science 19, 65-83 (1991). 10.1109/27.106800
9. O. B. J. Villasenor, Computational Plasma Physics 69, 306-316 (1992).
10. E. A. Berendeev, G. I. Dimov, G. I. Dudnikova, A. V. Ivanov, G. G. Lazareva, V. A. Vshivkov, Journal of Plasma Physics 81, p. 495810512 (2015). 10.1017/S0022377815000896
11. E. A. Berendeev, G. I. Dimov, A. V. Ivanov, G. G. Lazareva, M. P. Fedoruk, Doklady Physics 60 (2015). 10.1134/S1028335815020044
12. G. I. Dimov, I. S. Emelev, Technical Physics 59, 181-189 (2014). 10.1134/S1063784214020078