Информация о публикации

Просмотр записей
Инд. авторы: Zavjalov E.L., Razumov I.A., Gerlinskaya L.A., Romashchenko A.V.
Заглавие: In vivo mri visualization of u87 glioblastoma development dynamics in the model of orthotopic xenotransplantation to the scid mouse
Библ. ссылка: Zavjalov E.L., Razumov I.A., Gerlinskaya L.A., Romashchenko A.V. In vivo mri visualization of u87 glioblastoma development dynamics in the model of orthotopic xenotransplantation to the scid mouse // Russian Journal of Genetics: Applied Research. - 2016. - Vol.6. - Iss. 4. - P.448-453. - ISSN 2079-0597. - EISSN 2079-0600.
Внешние системы: DOI: 10.1134/S2079059716040225; РИНЦ: 27139798; SCOPUS: 2-s2.0-84975781043;
Реферат: eng: Glioblastoma is an extremely aggressive type of brain tumor. The average life span of patients with this diagnosis is 9–12 months. The development of adequate experimental models is required for the search of efficient approaches for the therapy and diagnostics of this disease. In this study, we used a number of magnetic resonance imaging (MRI) methods for describing the growth dynamics and cell morphology of U87 glioblastoma orthotopically xenotransplanted into mice of the immunodeficient SCID line. A comparison of the visualization efficiency of the developing tumor by means of T1- and T2-weighted images (obtained using an ultra-high field Bruker BioSpec (11.7 T) tomograph) demonstrated that T1-weighted images do not provide the required contrast of a pathological tissue relative to a healthy one (as opposed to T2-weighted images) due to the strong longitudinal magnetization of the tomograph’s magnetic field. of T1-weighted images, together with the intravenous introduction of paramagnetic nanoparticles (manganese oxide, MnO) significantly increased the tumor/normal tissue contrast in the MRI images. The study of the dynamics of the tumor cell growth by means of T2-weighted images demonstrated that the tumor development starts no earlier than 3 weeks after the intracranial introduction of the U87 cell culture (and the tumor cells grow exponentially). Thus, the methods of T1- and T2-weighted and MnO-enforced MRI were developed and characterized on the model of orthotopic xenotransplantation of U87 human glioblastoma cells into immunodeficient SCID animals, which can be used as the in vivo experimental model for checking new antitumor drugs and schemes of the treatment of the human brain’s oncological diseases.
Ключевые слова: magnetic resonance imaging; paramagnetic nanoparticles of manganese oxide; U87 glioblastoma; xenotransplantation;
Издано: 2016
Физ. характеристика: с.448-453
Цитирование:
1. Abdollahi, A., Schwager, C., Kleeff, J., Esposito, I., Domhan, S., Peschke, P., Hauser, K., Hahnfeldt, P., Hlatky, L., Debus, J., Peters, J.M., Friess, H., Folkman, J., and Huber, P.E., Transcriptional network governing the angiogenic switch in human pancreatic cancer, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 31, pp. 12890–12895.
2. Arvizo, R.R., Miranda, O.R., Moyano, D.F., Walden, C.A., Giri, K., Bhattacharya, R., and Mukherjee, P., Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles, PloS One, 2011, vol. 6, no. 9, p. 24374.
3. Atkinson, M., Juhasz, C., Shah, J., Guo, X., Kupsky, W., Fuerst, D., Johnson, R., and Watson, C., Paradoxical imaging findings in cerebral gliomas, J. Neurol. Sci., 2008, vol. 269, nos. 1–2, pp. 180–183.
4. Bachoo, R.M., Maher, E.A., Ligon, K.L., Sharpless, N.E., Chan, S.S., You, M.J., Tang, Y., DeFrances, J., Stover, E., Weissleder, R., Rowitch, D.H., Louis, D.N., and DePinho, R.A., Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis, Cancer Cell, 2002, vol. 1, no. 3, pp. 269–277.
5. Barker, F.G., Chang, S.M., Huhn, S.L., Davis, R.L., Gutin, P.H., Mcdermott, M.W., Wilson, C.B., and Prados, M.D., Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors, Cancer, 1997, vol. 80, no. 5, pp. 936–941.
6. Becher, O.J. and Holland, E.C., Genetically engineered models have advantages over xenografts for preclinical studies, Cancer Res., 2006, vol. 66, no. 7, pp. 3355–3359.
7. Castillo, M., Smith, J.K., Kwock, L., and Wilber, K., Apparent diffusion coefficients in the evaluation of highgrade cerebral gliomas, AJNR Am. J. Neuroradiol., 2001, vol. 22, no. 1, pp. 60–64.
8. Dass, C.R. and Choong, P.F., GFP expression alters osteosarcoma cell biology, DNA Cell Biol., 2007, vol. 26, no. 8, pp. 599–601.
9. Davis, M.E. and Shin, D.M., Nanoparticle therapeutics: An emerging treatment modality for cancer, Nature Rev. Drug Discovery, 2008, vol. 7, no. 9, pp. 771–782.
10. Frosina, G., Development of therapeutics for high grade gliomas using orthotopic rodent models, Curr. Med. Chem., 2013, vol. 20, no. 26, pp. 3272–3299.
11. Gagner, J.P., Law, M., Fischer, I., Newcomb, E.W., and Zagzag, D., Angiogenesis in gliomas: Imaging and experimental therapeutics, Brain Pathol., 2005, vol. 15, no. 4, pp. 342–363.
12. Ginsberg, L.E., Fuller, G.N., Hashmi, M., Leeds, N.E., and Schomer, D.F., The significance of lack of MRcontrast enhancement of supratentorial brain tumors in adults: Histopathological evaluation of a series, Surg. Neurol., 1998, vol. 49, no. 4, pp. 436–440.
13. Gossmann, A., Helbich, T.H., Kuriyama, N., Ostrowitzki, S., Roberts, T.P., Shames, D.M., van Bruggen, N., Wendland, M.F., Israel, M.A., and Brasch, R.C., Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to antiangiogenic therapy in a xenograft model of glioblastoma multiforme, J. Magn. Reson. Imaging, 2002, vol. 15, no. 3, pp. 233–240.
14. Jordan, J.H., D’Agostino, R.B., Hamilton, C.A., Vasu, S., Hall, M.E., Kitzman, D.W., and Hundley, W.G., Longitudinal assessment of concurrent changes in left ventricular ejection fraction and left ventricular myocardial tissue characteristics after administration of cardiotoxic chemotherapies using T1-weighted and T2-weighted cardiovascular magnetic resonance, Circulation: Cardiovascular Imaging, 2014, vol. 7, no. 6, pp. 872–879.
15. Koutcher, J.A., Hu, X., Xu, S., Gade, T.P., Leeds, N., Zhou, X.J., Zagzag, D., and Holland, E.C., MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials, Neoplasia, 2002, vol. 4, no. 6, pp. 480–485.
16. Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N.M., Pastorino, S., Purow, B.W., Christopher, N., Zhang, W., Park, J.K., and Fine, H.A., Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines, Cancer Cell, 2006, vol. 9, no. 5, pp. 391–403.
17. Lorger, M., Krueger, J.S., O’Neal, M., Staflin, K., and Felding-Habermann, B., Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 26, pp. 10666–10671.
18. Martinez-Murillo, R. and Martinez, A., Standardization of an orthotopic mouse brain tumor model following transplantation of CT-2A astrocytoma cells, Histol. Histopathol., 2007, vol. 22, no. 12, p. 1309.
19. McConville, P., Hambardzumyan, D., Moody, J.B., Leopold, W.R., Kreger, A.R., Woolliscroft, M.J., Rehemtulla, A., Ross, B.D., and Holland, E.C., Magnetic resonance imaging determination of tumor grade, early response to temozolomide in a genetically engineered mouse model of glioma, Clin. Cancer Res., 2007, vol. 13, no. 10, pp. 2897–2904.
20. Mintorovitch, J., Moseley, M.E., Chileuitt, L., Shimizu, H., Cohen, Y., and Weinstein, P.R., Comparison of diffusion and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats, Magn. Reson. Med., 1991, vol. 18, no. 1, pp. 39–50.
21. Moshkin, M.P., Petrovski, D.V., Akulov, A.E., Romaschenko, A.V., Gerlinskaya, L.A., Muchnaya, M.I., and Fomin, V.M., Aerosol deposition in nasal passages of burrowing and ground rodents when breathing dust-laden air, Biol. Bul. Rev., 2015, vol. 5, no. 1, pp. 36–45.
22. Mystkowska, D., Tutas, A., Jezierska-Wozniak, K., Mikolajczyk, A., Bobek-Billewicz, B., and Jurkowski, M.K., High resolution small animals dedicated magnetic resonance scanners as a tool for laboratory rodents central nervous system imaging, Pol. Ann. Med., 2013, vol. 20, no. 1, pp. 62–68.
23. Nelson, S.J. and Cha, S., Imaging glioblastoma multiforme, Cancer J., 2003, vol. 9, no. 2, pp. 134–145.
24. Pope, W.B., Lai, A., Nghiemphu, P., Mischel, P., and Cloughesy, T.F., MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy, Neurology, 2006, vol. 66, no. 8, pp. 1258–1260.
25. Rausch, M., Hiestand, P., Baumann, D., Cannet, C., and Rudin, M., MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE, Magn. Reson. Med., 2003, vol. 50, no. 2, pp. 309–314.
26. Reardon, D.A., Wen, P.Y., Desjardins, A., Batchelor, T.T., and Vredenburgh, J.J., Glioblastoma multiforme: An emerging paradigm of anti-VEGF therapy, Expert Opin. Biol. Ther., 2008, vol. 8, no. 4, pp. 541–553.
27. Roberts, H.C., Roberts, T.P., Brasch, R.C., and Dillon, W.P., Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrastenhanced MRimaging: Correlation with histologic grade, AJNR Am. J. Neuroradiol., 2000, vol. 21, no. 5, pp. 891–899.
28. Stan, R.V., Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis, J. Cell. Mol. Med., 2007, vol. 11, no. 4, pp. 621–643.
29. Stockhammer, F., Plotkin, M., Amthauer, H., van Landeghem, F.K., and Woiciechowsky, C., Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast enhancing gliomas, J. Neurooncol., 2008, vol. 88, no. 2, pp. 205–210.
30. Stupp, R., Hegi, M.E., Gilbert, M.R., and Chakravarti, A., Chemoradiotherapy in malignant glioma: Standard of care and future directions, J. Clin. Oncol., 2007, vol. 25, no. 26, pp. 4127–4136.
31. Sugahara, T., Korogi, Y., Kochi, M., Ikushima, I., Hirai, T., Okuda, T., Shigematsu, Y., Liang, L., Ge, Y., Ushio, Y., and Takahashi, M., Correlation of MRimaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas, AJR Am. J. Roentgenol., 1998, vol. 171, no. 6, pp. 1479–1486.
32. Szentirmai, O., Baker, C.H., Lin, N., Szucs, S., Takahashi, M., Kiryu, S., Kung, A.L., Mulligan, R.C., and Carter, B.S., Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: Correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect, Neurosurgery, 2006, vol. 58, no. 2, pp. 365–372.
33. Winkler, F., Kienast, Y., Fuhrmann, M., von Baumgarten, L., Burgold, S., Mitteregger, G., Kretzschmar, H., and Herms, J., Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis, Glia, 2009, vol. 57, no. 12, pp. 1306–1315.
34. Wong, K., Young, G.S., Makale, M., Hu, X., Yildirim, N., Cui, K., Wong, S.T.C., and Kesari, S., Characterization of a human tumor sphere glioma orthotopic model using magnetic resonance imaging, J. Neurooncol., 2011, vol. 104, pp. 473–481.