Информация о публикации

Просмотр записей
Инд. авторы: Shtyrina O.V., Ivanenko A.V., Yarutkina I.A., Kemmer A.V., Skidin A.S., Kobtsev S.M., Fedoruk M.P.
Заглавие: Experimental measurement and analytical estimation of the signal gain in an Er-doped fiber
Библ. ссылка: Shtyrina O.V., Ivanenko A.V., Yarutkina I.A., Kemmer A.V., Skidin A.S., Kobtsev S.M., Fedoruk M.P. Experimental measurement and analytical estimation of the signal gain in an Er-doped fiber // Journal of the Optical Society of America B: Optical Physics. - 2017. - Vol.34. - Iss. 2. - P.227-231. - ISSN 0740-3224. - EISSN 1520-8540.
Внешние системы: DOI: 10.1364/JOSAB.34.000227; РИНЦ: 29481804; SCOPUS: 2-s2.0-85011879285; WoS: 000394028400001;
Реферат: eng: We propose a theoretical method to estimate the saturation power and the small signal gain of an active Er-doped fiber as functions of the fiber length and the pump power. The results make it possible to carry out the numerical simulation of a given Er-doped fiber. The results allow us to carry out the optimization of fiber laser systems by means of a numerical simulation using the nonlinear Schrödinger equation. © 2017 Optical Society of America.
Ключевые слова: Theoretical methods; Small signal gain; Saturation power; Laser systems; Fiber length; Er-doped fibers; Analytical estimations; Numerical models; Nonlinear equations; Fiber lasers; Erbium; Dinger equation; Fibers;
Издано: 2017
Физ. характеристика: с.227-231
Цитирование:
1. A. E. Siegman, Lasers (University Science Books, 1986).
2. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (1994).
3. T. Pfeiffer and H. Büllow, "Analytical gain equation for erbium-doped fiber amplifiers including mode field profiles and dopant distribution," IEEE Photon. Technol. Lett. 4, 449-451 (1992).
4. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical model for rare-earth-doped fiber amplifiers and lasers," IEEE J. Quantum Electron. 30, 1817-1830 (1994).
5. H.A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron 11, 736-746 (1975).
6. H.A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and Kerr lens mode locking," IEEE J. Quantum Electron. 28, 2086-2096 (1992).
7. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, "Energy rate equations for mode-locked lasers," J. Opt. Soc. Am. B 14, 2099-2111 (1997).
8. J. N. Kutz, "Mode-locked soliton lasers," SIAM Rev. 48, 629-678 (2006).
9. S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, "Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation," Opt. Express 20, 27447-27453 (2012).
10. A. V. Ivanenko, S. M. Kobtsev, S. V. Kukarin, and A. S. Kurkov, "Femtosecond Er laser system based on side-coupled fibers," Laser Phys. 20, 341-343 (2010).
11. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007).
12. F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photon. Rev. 2, 58-73 (2008).
13. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
14. P. Grelu and N. Akhmediev, "Dissipative solitons for mode-locked lasers," Nat. Photonics 6, 84-92 (2012).
15. X. Liu, "Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity," Opt. Express 17, 22401-22416 (2009).
16. A. Martinez and S. Yamashita, "Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes," Opt. Express 19, 6155-6163 (2011).
17. O. Shtyrina, M. Fedoruk, S. Turitsyn, R. Herda, and O. Okhotnikov, "Evolution and stability of pulse regimes in SESAM-mode-locked femtosecond fiber lasers," J. Opt. Soc. Am. B 26, 346-352 (2009).
18. S. K. Turitsyn, "Theory of energy evolution in laser resonators with saturated gain and non-saturated loss," Opt. Express 17, 11898-11904 (2009).
19. B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, "Intracavity dynamics in high-power mode-locked fiber lasers," Phys. Rev. A 81, 033828 (2010).
20. S. K. Turitsyn, B. Bale, and M. P. Fedoruk, "Dispersion-managed solitons in fibre systems and lasers," Phys. Rep. 521, 135-203 (2012).
21. B. G. Bale, O. G. Okhotnikov, and S. K. Turitsyn, "Modeling and technologies of ultrafast fiber lasers," in Fiber Lasers, O. G. Okhotnikov, ed. (Wiley, 2012).
22. I. A. Yarutkina, O. V. Shtyrina, A. Skidin, and M. P. Fedoruk, "Theoretical study of energy evolution in ring cavity fiber lasers," Opt. Commun. 342, 26-29 (2015).
23. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, "Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics," Opt. Express 19, 8394-8405 (2011).