Информация о публикации

Просмотр записей
Инд. авторы: Podivilov E.V., Kharenko D.S., Bednyakova A.E., Fedoruk M.P., Babin S.A.
Заглавие: Spectral comb of highly chirped pulses generated via cascaded FWM of two frequency-shifted dissipative solitons
Библ. ссылка: Podivilov E.V., Kharenko D.S., Bednyakova A.E., Fedoruk M.P., Babin S.A. Spectral comb of highly chirped pulses generated via cascaded FWM of two frequency-shifted dissipative solitons // Scientific Reports. - 2017. - Vol.7. - Iss. 1. - Art.2905. - ISSN 2045-2322.
Внешние системы: DOI: 10.1038/s41598-017-03092-2; РИНЦ: 31025532; SCOPUS: 2-s2.0-85020676859; WoS: 000402789100002;
Реферат: eng: Dissipative solitons generated in normal-dispersion mode-locked lasers are stable localized coherent structures with a mostly linear frequency modulation (chirp). The soliton energy in fiber lasers is limited by the Raman effect, but implementation of the intracavity feedback at the Stokes-shifted wavelength enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of these two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming in the spectral domain a comb of highly chirped pulses. We observed up to eight equidistant components in the interval of more than 300 nm, which demonstrate compressibility from ∼10 ps to ∼300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications such as few-cycle/arbitrary-waveform pulse synthesis, comb spectroscopy, coherent communications and bio-imaging. © The Author(s) 2017.
Издано: 2017
Физ. характеристика: 2905
Цитирование:
1. Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185, doi:10.1109/2944.902165 (2000).
2. Udem, T., Holzwarth, R. & H.nsch, T. W. Optical frequency metrology. Nature 416, 233-237, doi:10.1038/416233a (2002).
3. Ye, J. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. (Kluwer Academic Publishers, 2005).
4. Ell, R. et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett. 26, 373-5, doi:10.1364/OL.26.000373 (2001).
5. Alfano, R. R. The Supercontinuum Laser Source. (Springer New York, 1989).
6. Dudley, J. M. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135-1184, doi:10.1103/RevModPhys.78.1135 (2006).
7. Dudley, J. M. & Taylor, J. R. Ten years of nonlinear optics in photonic crystal fibre. Nat. Photonics 3, 85-90, doi:10.1038/nphoton.2008.285 (2009).
8. Gorbach, A. V. & Skryabin, D. V. Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photoniccrystal fibres. Nat. Photonics 1, 653-657, doi:10.1038/nphoton.2007.202 (2007).
9. Webb, K. E. et al. Nonlinear optics of fibre event horizons. Nat. Commun. 5, 4969, doi:10.1038/ncomms5969 (2014).
10. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-Based Optical Frequency Combs. Science 332, 555-559, doi:10.1126/science.1193968 (2011).
11. Wang, C. Y. et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun. 4, 1345, doi:10.1038/ncomms2335 (2013).
12. Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica 3, 854, doi:10.1364/OPTICA.3.000854 (2016).
13. Milián, C., Gorbach, A. V., Taki, M., Yulin, A. V. & Skryabin, D. V. Solitons and frequency combs in silica microring resonators: Interplay of the Raman and higher-order dispersion effects. Phys. Rev. A 92, 33851, doi:10.1103/PhysRevA.92.033851 (2015).
14. Jung, H., Stoll, R., Guo, X., Fischer, D. & Tang, H. X. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 1, 396, doi:10.1364/OPTICA.1.000396 (2014).
15. Xue, X. et al. Second-harmonic assisted four-wave mixing in chip-based microresonator frequency comb generation. Light: Science & Applications accepted article preview 13, doi: 10.1038/lsa.2016.253 (November 2016).
16. Grelu, P. & Akhmediev, N. N. Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84-92, doi:10.1038/nphoton.2011.345 (2012).
17. Renninger, W. H. & Wise, F. W. In Fiber Lasers (ed. Okhotnikov, O. G.) 97-134 (Wiley, 2012).
18. Babin, S. A. et al. Multicolour nonlinearly bound chirped dissipative solitons. Nat. Commun. 5, 4653, doi:10.1038/ncomms5653 (2014).
19. Kharenko, D. S. et al. Feedback-controlled Raman dissipative solitons in a fiber laser. Opt. Express 23, 1857-1862, doi:10.1364/OE.23.001857 (2015).
20. Hansson, T. & Wabnitz, S. Bichromatically pumped microresonator frequency combs. Phys. Rev. A - At. Mol. Opt. Phys. 90, 1-7, doi:10.1103/PhysRevA.90.013811 (2014).
21. Li, Y. H., Zhao, Y. Y. & Wang, L. J. Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers. Opt. Lett. 37(16), 3441-3443, doi:10.1364/OL.37.003441 (2012).
22. Churin, D., Olson, J., Norwood, R. A., Peyghambarian, N. & Kieu, K. High-power synchronously pumped femtosecond Raman fiber laser. Opt. Lett. 40, 2529-32, doi:10.1364/OL.40.002529 (2015).
23. Lin, J. & Spence, D. J. 25.5 fs dissipative soliton diamond Raman laser. Opt. Lett. 41, 1861-4, doi:10.1364/OL.41.001861 (2016).
24. Dudley, J. M. & Coen, S. Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers. IEEE Journal of Selected Topics in Quantum Electronics 8(3), 651-659, doi:10.1109/JSTQE.2002.1016369 (2002).
25. Zlobina, E. A., Kharenko, D. S., Kablukov, S. I. & Babin, S. A. Four wave mixing of conventional and Raman dissipative solitons from single fiber laser. Opt. Express 23, 16589-94, doi:10.1364/OE.23.016589 (2015).
26. Xu, C. & Wise, F. W. Recent Advances in Fiber Lasers for Nonlinear Microscopy. Nat. Photonics 7, 875-882, doi:10.1038/nphoton.2013.284 (2013).
27. Kharenko, D. S. et al. Cascaded generation of coherent Raman dissipative solitons. Opt. Lett. 41, 175-178, doi:10.1364/OL.41.000175 (2016).
28. Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 6, 423-431, doi:10.1038/nphoton.2012.149 (2012).
29. Karpov, M. et al. Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator. Phys. Rev. Lett. 116, 103902, doi:10.1103/PhysRevLett.116.103902 (2016).
30. Hansson, T., Modotto, D. & Wabnitz, S. Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt. Lett. 39, 6747-50, doi:10.1364/OL.39.006747 (2014).
31. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Stokes solitons in optical microcavities. Nat. Phys. 1, 1-6 (2016).
32. Wirth, A. et al. Synthesized Light Transients. Science 334, 195-200, doi:10.1126/science.1210268 (2011).
33. Cox, J. A., Putnam, W. P., Sell, A., Leitenstorfer, A. & K.rtner, F. X. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Opt. Lett. 37, 3579-81, doi:10.1364/OL.37.003579 (2012).
34. Liu, X., Chraplyvy, A. R., Winzer, P. J., Tkach, R. W. & Chandrasekhar, S. Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit. Nat. Photonics 7, 560-568, doi:10.1038/nphoton.2013.109 (2013).
35. Schibli, T. R. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nat. Photonics 2, 355-359, doi:10.1038/nphoton.2008.79 (2008).
36. Jiang, Y. et al. Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers. Sci. Rep. 6, 21169, doi:10.1038/srep21169 (2016).
37. Agrawal, G. P. Nonlinear Fiber Optics. (Academic Press, 2007).
38. Podivilov, E. V. & Kalashnikov, V. L. Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubicquintic complex Ginzburg-Landau equation. JETP Lett. 82, 467-471, doi:10.1134/1.2150863 (2005).