Информация о публикации

Просмотр записей
Инд. авторы: Shtyrina O.V., Fedoruk M.P., Kivshar Y.S., Turitsyn S.K.
Заглавие: Coexistence of collapse and stable spatiotemporal solitons in multimode fibers
Библ. ссылка: Shtyrina O.V., Fedoruk M.P., Kivshar Y.S., Turitsyn S.K. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers // Physical Review A - Atomic, Molecular, and Optical Physics. - 2018. - Vol.97. - Iss. 1. - Art.013841. - ISSN 1050-2947. - EISSN 1094-1622.
Внешние системы: DOI: 10.1103/PhysRevA.97.013841; РИНЦ: 35496710; SCOPUS: 2-s2.0-85041035813; WoS: 000423426200013;
Реферат: eng: We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.
Ключевые слова: CONFINEMENT; PROPAGATION; EQUATION; STABILITY; OPTICAL SOLITONS; PULSE-COMPRESSION; ATTRACTIVE INTERACTIONS; BOSE-EINSTEIN CONDENSATE; WAVE COLLAPSE; DYNAMICS;
Издано: 2018
Физ. характеристика: 013841
Цитирование:
1. Y. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, New York, 2003).
2. S. K. Turitsyn, Theor. Math. Phys. 64, 797 (1985). TMPHAH 0040-5779 10.1007/BF01017959
3. V. E. Zakharov and E. A. Kuznetsov, Phys. Usp. 55, 535 (2012). PHUSEY 1063-7869 10.3367/UFNe.0182.201206a.0569
4. E. A. Kuznetsov, Top. Appl. Phys. 114, 175 (2009) 9780-3873 10.1007/978-0-387-34727-1-7;
5. Self-Focusing: Past and Present, edited by R. W. Boyd, S. G. Lukishova, and Y. R. Shen (Springer, New York, 2009).
6. C. Sulem and P. L. Sulem, Nonlinear Schrodinger Equations: Self-Focusing and Wave Collapse (Springer, New York, 2007).
7. M. D. Spector, G. E. Fal'kovich, and S. K. Turitsyn, Phys. Lett. A 99, 271 (1983). PYLAAG 0375-9601 10.1016/0375-9601(83)90882-4
8. E. G. Falkovich and S. K. Turitsyn, Sov. Phys. JETP 62, 146 (1985).
9. S. K. Turitsyn, Phys. Rev. A 47, R27 (1993). PLRAAN 1050-2947 10.1103/PhysRevA.47.R27
10. A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000). PRLTAO 0031-9007 10.1103/PhysRevLett.84.3582
11. L. Bergé and A. Couairon, Phys. Rev. Lett. 86, 1003 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.86.1003
12. A. M. Rubenchik, I. S. Chekhovskoy, M. P. Fedoruk, O. V. Shtyrina, and S. K. Turitsyn, Opt. Lett. 40, 721 (2015). OPLEDP 0146-9592 10.1364/OL.40.000721
13. P. M. Lushnikov and N. Vladimirova, Opt. Express 23, 31120 (2015). OPEXFF 1094-4087 10.1364/OE.23.031120
14. V. V. Flambaum and E. A. Kuznetsov, Nonlinear dynamics of ultra-cold gases: Collapse of Bose gas with attractive interaction, in Proceedings of NATO Advanced Research Workshop on Singularities in Fluids, Plasmas and Optics (Heraklion, Greece), edited by R. E. Caflisch and G. C. Papanicolaou (Kluwer Academic, Dordrecht, The Netherlands, 1992).
15. Yu. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117 (2000). PRPLCM 0370-1573 10.1016/S0370-1573(99)00106-4
16. X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999). PRLTAO 0031-9007 10.1103/PhysRevLett.82.4631
17. S. Minardi, F. Eilenberger, Y. V. Kartashov, A. Szameit, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, L. Torner, F. Lederer, A. Tünnermann, and T. Pertsch, Phys. Rev. Lett. 105, 263901 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.105.263901
18. F. Eilenberger, K. Prater, S. Minardi, R. Geiss, U. Ropke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and T. Pertsch, Phys. Rev. X 3, 041031 (2013). 2160-3308 10.1103/PhysRevX.3.041031
19. P. J. Winzer, IEEE Photonics J. 4, 647 (2012). 1943-0655 10.1109/JPHOT.2012.2189379
20. D. J. Rochardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013). 1749-4885 10.1038/nphoton.2013.94
21. W. H. Renninger and F. W. Wise, Nat. Commun. 4, 1719 (2013). 2041-1723 10.1038/ncomms2739
22. A. Hasegawa, Opt. Lett. 5, 416 (1980). OPLEDP 0146-9592 10.1364/OL.5.000416
23. B. Crosignani and P. D. Porto, Opt. Lett. 6, 329 (1981). OPLEDP 0146-9592 10.1364/OL.6.000329
24. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, J. Opt. B 7, R53 (2005). JOBOFD 1464-4266 10.1088/1464-4266/7/5/R02
25. A. Mafi, J. Lightwave Technol. 30, 2803 (2012). JLTEDG 0733-8724 10.1109/JLT.2012.2208215
26. L. G. Wright, D. N. Christodoulides, and F. W. Wise, Nat. Photonics 9, 306 (2015). 1749-4885 10.1038/nphoton.2015.61
27. S. Buch and G. P. Agrawal, Opt. Lett. 40, 225 (2015). OPLEDP 0146-9592 10.1364/OL.40.000225
28. L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Opt. Express 23, 3492 (2015). OPEXFF 1094-4087 10.1364/OE.23.003492
29. L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, Phys. Rev. Lett. 115, 223902 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.115.223902
30. K. Krupa, A. Tonello, A. Barthelemy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, Phys. Rev. Lett. 116, 183901 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.183901
31. L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 66, 043603 (2002). PLRAAN 1050-2947 10.1103/PhysRevA.66.043603
32. B. B. Baizakov, B. A. Malomed, and M. Salerno, Phys. Rev A 70, 053613 (2004). PLRAAN 1050-2947 10.1103/PhysRevA.70.053613
33. E. V. Shuryak, Phys. Rev. A 54, 3151 (1996). PLRAAN 1050-2947 10.1103/PhysRevA.54.3151
34. C. A. Sackett, H. T. C. Stoof, and R. G. Hulet, Phys. Rev. Lett. 80, 2031 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.80.2031
35. J. M. Gerton, D. Strekalov, I. Prodan, and R. G. Hulet, Nature (London) 408, 692 (2000). NATUAS 0028-0836 10.1038/35047030
36. L. Bergé, T. J. Alexander, and Yu. S. Kivshar, Phys. Rev. A 62, 023607 (2000). PLRAAN 1050-2947 10.1103/PhysRevA.62.023607
37. T. Tsurumi, H. Morise, and M. Wadati, Int. J. Mod. Phys. B 14, 655 (2000) IJPBEV 0217-9792 10.1142/S0217979200000595;
38. H. Morise and M. Wadati, J. Phys. Soc. Jpn. 70, 3529 (2001). JUPSAU 0031-9015 10.1143/JPSJ.70.3529
39. A. V. Rybin, G. G. Varzugin, M. Lindberg, J. Timonen, and R. K. Bullough, Phys. Rev. E 62, 6224 (2000). 1063-651X 10.1103/PhysRevE.62.6224
40. B. J. Cusack, T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, Phys. Rev. A 65, 013609 (2001). PLRAAN 1050-2947 10.1103/PhysRevA.65.013609
41. D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Phys. Rev. Lett. 98, 053901 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98.053901
42. J. Carpenter, B. J. Eggleton, and J. Schröder, Nat. Photonics 9, 751 (2015). 1749-4885 10.1038/nphoton.2015.188
43. A. A. Kolokolov and N. B. Vakhitov, Radiophys. Quantum Electron. 16, 783 (1973). RPQEAC 0033-8443 10.1007/BF01031343
44. S. Raghavan and G. P. Agrawal, Opt. Commun. 180, 377 (2000). OPCOB8 0030-4018 10.1016/S0030-4018(00)00727-6