Информация о публикации

Просмотр записей
Инд. авторы: Пестунов И.А., Рылов С.А., Мельников П.В.
Заглавие: Классификация гиперспектральных изображений высокого пространственного разрешения
Библ. ссылка: Пестунов И.А., Рылов С.А., Мельников П.В. Классификация гиперспектральных изображений высокого пространственного разрешения // Журнал Сибирского федерального университета. Серия: Техника и технологии. - 2018. - Т.11. - № 1. - С.69-76. - ISSN 1999-494X.
Внешние системы: DOI: 10.17516/1999-494X-0010; РИНЦ: 32482147;
Реферат: rus: В статье предлагается новый вычислительно эффективный метод спектрально-текстурной классификации гиперспектральных изображений высокого пространственного разрешения, основанный на использовании ансамблевого алгоритма кластеризации ECCA. При классификации используется предположение, что в локальной области изображения для текстур одного типа процентное содержание пикселей из разных кластеров примерно одинаково, а для разных типов текстур, как правило, отличается. Для предлагаемого классификатора не требуются обучающие выборки большого объема. Достаточно задать всего лишь несколько представителей каждого класса. Приводятся результаты экспериментов с модельными и реальными изображениями, подтверждающие эффективность предложенного метода.
eng: А new computationally efficient spectral-texture classification method for high spatial resolution hyperspectral images is proposed. This method is based on the ensemble clustering algorithm ECCA. Classification method is based on the assumption that the percentage of pixels from different clusters in local image regions is approximately the same for the fixed texture type and differs for different types of textures. The proposed classification method does not require large amount of training samples. It is enough to set only few representatives of each class. Experiments on models and real-world data are described proving the effectiveness of the proposed method.
Ключевые слова: multispectral texture; spectral-spatial classification; гиперспектральные изображения; высокое пространственное разрешение; спектрально-текстурные признаки; high spatial resolution; hyperspectral images; классификация;
Издано: 2018
Физ. характеристика: с.69-76
Цитирование:
1. Бондур В.Г. Современные подходы к обработке больших потоков гиперспектральной и многоспектральной аэрокосмической информации. Исследование Земли из космоса, 2014, 1, 4-16
2. Fauvel M., Benediktsson J.A., Chanussot J., Sveinsson J.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles, IEEE Trans. Geosci. Remote Sens., 46(11), 3804-3814
3. Борзов С.М., Мельников П.В., Пестунов И.А., Потатуркин О.И., Федотов А.М. Комплексная обработка гиперспектральных изображений на основе спектральной и пространственной информации. Вычислительные технологии, 2016, 21(1), 25-39
4. Потапов А.А. Новые информационные технологии на основе вероятностных текстурных и фрактальных признаков в радиолокационном обнаружении малоконтрастных целей. Радиотехника и электроника, 2003, 48(9), 1101-1119
5. Petrou M., Gacia Sevilla P. Image processing: Dealing with texture, 2006. 618 p
6. Kumar B., Onkar Dikshit O. Spectral-Spatial Classification of Hyperspectral Imagery Based on Moment Invariants, IEEE Journal of selected topics in applied earth observations and remote sensing, 2015, 8(6), 2457-24-63
7. Salem R.B., Ettabaa K.S., Hamdi M.A. Spectral-spatial classification of hyperspectral images using different spatial features and composite kernels, IEEE IPAS’14: International image processing applications and systems conference, 2014, 1-7
8. Пестунов И.А., Рылов С.А. Алгоритмы спектрально-текстурной сегментации спутниковых изображений высокого пространственного разрешения. Вестник КемГУ, 2012, 4/2 (52), 104-110
9. Pestunov, I.A., Berikov, V.B., Kulikova, E.A., Rylov, S.A. Ensemble of clustering algorithm for large datasets, Optoelectronics, Instrumentation and Data Processing, 2011, 47(3), 245-252
10. Kozoderov V.V., Kondranin T.V., Dmitriev E.V., Sokolov A.A. Retrieval of forest stand attributes using optical airborne remote sensing data, Optics Express, 2014, 22(13), 15410-15423
11. Kozoderov V.V., Kondranin T.V., Dmitriev E.V., Kamentsev V.P. Bayesian classifier applications of airborne hyperspectral imagery processing for forested areas, Advances in Space Research, 2015, 55(11), 2657-2667