Информация о публикации

Просмотр записей
Инд. авторы: Ryabko B.
Заглавие: Properties of two Shannon's ciphers
Библ. ссылка: Ryabko B. Properties of two Shannon's ciphers // Designs, Codes and Cryptography. - 2018. - Vol.86. - Iss. 5. - P.989-995. - ISSN 0925-1022. - EISSN 1573-7586.
Внешние системы: DOI: 10.1007/s10623-017-0372-2; РИНЦ: 35704498; SCOPUS: 2-s2.0-85021154090; WoS: 000428375900002;
Реферат: eng: In 1949 Shannon published the famous paper "Communication theory of secrecy systems" where he briefly described two ciphers, but did not investigate their properties. In this note we carry out information-theoretical analysis of these ciphers. In particular, we propose estimations of the cipher equivocation and the probability of correct deciphering without key.
Ключевые слова: Information theory; Entropy; Shannon cipher; Cryptography; CRYPTOGRAPHY;
Издано: 2018
Физ. характеристика: с.989-995
Цитирование:
1. Calmon E.P., Medard M., Varia M., Duffy K.R., Christiansen M.M., Zeger L.M.: Hiding Symbols and Functions: New Metrics and Constructions for Information-Theoretic Security. arxiv:1503.08515 (2015).
2. Cover T.M., Thomas J.A.: Elements of Information Theory. Wiley-Interscience, New York (2006).
3. Diffie W., Hellman M.E.: Privacy and authentication: an introduction to cryptography. Proc. IEEE 67(3), 397–427 (1979).
4. Hellman M.E.: An extension of the Shannon theory approach to cryptography. IEEE Trans. Inf. Theory 23(3), 289–294 (1977).
5. Lu S.-C.: The existence of good cryptosystems for key rates greater than the message redundancy. IEEE Trans. Inf. Theory 25(4), 475–477 (1979).
6. Ryabko B.: The Vernam cipher is robust to small deviations from randomness. Probl. Inf. Transm. 51(1), 82–86 (2015).
7. Shannon C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949).
8. Shannon C.E.: Prediction and entropy of printed English. Bell Syst. Tech. J. 30(1), 50–64 (1951).
9. Takahira R., Tanaka-Ishii K., Debowski L.: Entropy rate estimates for natural languagea new extrapolation of compressed large-scale corpora. Entropy 18(10), 364 (2016).