Информация о публикации

Просмотр записей
Инд. авторы: Grigor'ev Y.N., Meleshko S.V., Suriyawichitseranee A.
Заглавие: Exact Solutions of the Boltzmann Equations with a Source
Библ. ссылка: Grigor'ev Y.N., Meleshko S.V., Suriyawichitseranee A. Exact Solutions of the Boltzmann Equations with a Source // Journal of Applied Mechanics and Technical Physics. - 2018. - Vol.59. - Iss. 2. - P.189-196. - ISSN 0021-8944. - EISSN 1573-8620.
Внешние системы: DOI: 10.1134/S0021894418020013; РИНЦ: 35514300; SCOPUS: 2-s2.0-85047399702; WoS: 000432898900001;
Реферат: eng: Exact solutions of a nonlinear Boltzmann kinetic equation with a source are constructed in the case of an isotropic distribution function and Maxwell model of isotropic scattering. These solutions are constructed with the use of an equivalence group such that one of its transformations uniquely identifies the class of the source functions that are linear in terms of the distribution function; moreover, the transformed equation has a zero right side. As a result, invariant solutions of the type of the Bobylev-Krook-Wu solutions can be explicitly found, in particular, those that admit physical interpretation.
Ключевые слова: DIFFUSION; GENERALIZED BKW SOLUTION; PRELIMINARY GROUP CLASSIFICATION; source function; isotropic distribution function; Boltzmann equation; invariant solutions; REMOVAL;
Издано: 2018
Физ. характеристика: с.189-196
Цитирование:
1. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, 1958).
2. V. C. Boffi and G. Spiga, “Nonlinear Diffusion of Test Particles in the Presence of an External Conservative Force,” J. Phys. Fluids 25, 1987-1992 (1982).
3. L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978; Academic Press, New York, 1982).
4. T. F. Nonenmacher, “Application of the Similarity Method to the Nonlinear Boltzmann Equation,” Z. Angev. Math. Phys. 35 (5), 680-691 (1984).
5. M. Krook and T. T. Wu, “Formation of Maxwellian Tails,” Phys. Rev. Lett. 36 (19), 1107-1109 (1976).
6. Yu. N. Grigoriev, S. V. Meleshko, and A. Suriyawichitseranee, “On Group Classification of the Spatially Homogeneous and Isotropic Boltzmann Equation with Sources II,” Int. Non-Linear Mech. 61, 15-18 (2014).
7. A. V. Bobylev, “Fourier Transform in the Boltzmann Control Theory for Maxwell Molecules,” Dokl. Akad. Nauk SSSR 225 (5), 1041-1044 (1975).
8. Yu. N. Grigoriev, S. V. Meleshko, and A. Suriyawichitseranee, “Group Analysis of the Spatially Homogeneous and Isotropic Boltzmann Equation with Source Term,” Comm. Nonlinear Sci. Numer. Simulat. 20, 719-730 (2015).
9. I. S. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Nonlocal Symmetries. Heuristic Approach,” in Results of Science and Engineering, Ser. Advanced Problems of Mathematics. New Achievements, Vol. 34 (VINITI, Moscow, 1989).
10. N. H. Ibragimov, M. Torrisi, and A. Valenti, “Preliminary Group Classification of Equation vtt = f(x, vx)vxx + g(x, vx),” J. Math. Phys. 32 (11), 2988-2995 (1991).
11. D. S. Cardoso-Bihlo, A. Bihlo, and R. O. Popovych, “Enhanced Preliminary Group Classification of a Class of Generalized Diffusion Equations,” Comm. Nonlinear Sci. Numer. Simulat. 16, 3622-3638 (2011).
12. Yu. N. Grigor’ev and S. V. Meleshko, “Group Analysis of the Integrodifferential Boltzmann Equation,” Dokl. Akad. Nauk SSSR 297 (2), 323-327 (1987).
13. L. Feng-Shan, A. Karnbanjong, A. Suriyawichitseranee, et al., “Application of a Lie Group Admitted by a Homogeneous Equation for Group Classification of a Corresponding Inhomogeneous Equation,” Comm. Nonlinear Sci. Numer. Simulat. 48, 350-360 (2017).
14. G. Spiga, “A Generalized BKW Solution of the Nonlinear Boltzmann Equation with Removal,” Phys. Fluids 27 (11), 2599-2600 (1984).
15. A. V. Bobylev, “On Exact Solutions of the Boltzmann Equation,” Dokl. Akad. Nauk SSSR, 225 (6), 1296-1299 (1975).
16. A. Santos and J. J. Brey, “Comments on “A Generalized BKW Solution of the Nonlinear Boltzmann Equation with Removal” [Phys. Fluids 27, 2599 (1984)],” Phys. Fluids 29 (5), 1750 (19896).
17. Yu. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, and S. V. Meleshko, Symmetries of Integro-Differential Equation with Applications in Mechanics and Plasma Physics (Springer, Berlin-Heidelberg, 2010). (Lecture Notes in Physics; Vol. 806.)