Информация о публикации

Просмотр записей
Инд. авторы: Ryabko B.Y.
Заглавие: Information-Theoretic Approach to Estimating the Capacity of Distributed Memory Systems
Библ. ссылка: Ryabko B.Y. Information-Theoretic Approach to Estimating the Capacity of Distributed Memory Systems // Problems of Information Transmission. - 2018. - Vol.54. - Iss. 2. - P.191-198. - ISSN 0032-9460. - EISSN 1608-3253.
Внешние системы: DOI: 10.1134/S0032946018020072; РИНЦ: 35752797; SCOPUS: 2-s2.0-85049947481; WoS: 000438828500007;
Реферат: eng: Systems with cash memory (or more generally, with distributed memory) are very widely used in information technologies. Such are content delivery networks (CDN) of various types, which deliver digital movies, books, and similar content; peer-to-peer (P2P) networks, where millions of members exchange various information; and many other systems and devices of this kind. We introduce the notions of capacity and entropy efficiency for distributed memory systems, propose methods for estimating these quantities, and give an example of their application.
Ключевые слова: Distributed computer systems; Electronic document exchange; Information theory; Memory architecture; Content delivery network; Distributed Memory; Distributed memory systems; Information-theoretic approach; Peer to peer networks; Peer to Peer (P2P) network; Digital movies; Digital devices;
Издано: 2018
Физ. характеристика: с.191-198
1. Jeon, S.-W., Hong, S.-N., Ji, M., Caire, G., and Molisch, A.F., Wireless Multihop Device-to-Device Caching Networks, IEEE Trans. Inform. Theory, 2017, vol. 63, no. 3, pp. 1662–1676.
2. Hachem, J., Karamchandani, N., and Diggavi, S.N., Coded Caching for Multi-Level Popularity and Access, IEEE Trans. Inform. Theory, 2017, vol. 63, no. 5, pp. 3108–3141.
3. Ryabko, B., An Information-Theoretic Approach to Estimate the Capacity of Processing Units, Perform. Eval., 2012, vol. 69, no. 6, pp. 267–273.
4. Shannon, C.E., A Mathematical Theory of Communication, Bell Syst. Tech. J., 1948, vol. 27, no. 3, pp. 379–423; no. 4, pp. 623–656.
5. Ryabko, B. and Rakitskiy, A., An Analytic Method for Estimating the Computation Capacity of Computing Devices, J. Circuits Syst. Comput., 2017, vol. 26, no. 5, p. 1750086.
6. Ryabko, B. and Rakitskiy, A., Application of the Computer Capacity to the Analysis of Processors Evolution, arXiv:1705.07730 [cs.PF], 2017.
7. Cover, T.M. and Thomas, J.A., Elements of Information Theory, New York: Wiley, 1991.
8. Dinaburg, E.I., On the Relations among Various Entropy Characteristics of Dynamical Systems, Izv. Akad. Nauk SSSR, Ser. Mat., 1971, vol. 35, no. 2, pp. 324–366 [Math. USSR Izv. (Engl. Transl.), 1971, vol. 5, no. 2, pp. 337–378].
9. Goodman, T.N.T., Relating Topological Entropy and Measure Entropy, Bull. London Math. Soc., 1971, vol. 3, pp. 176–180.
10. Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S., Web Caching and Zipf-like Distributions: Evidence and Implications, in Proc. 18th Annual Conf. on Computer Communications (INFOCOM’99), New York, USA, Mar. 21–25, 1999, vol. 1, pp. 126–134.
11. Krichevsky, R., Universal Compression and Retrieval, Dordrecht: Kluwer, 1994.