Информация о публикации

Просмотр записей
Инд. авторы: Berendeev E., Dudnikova G., Efimova A., Vshivkov V.
Заглавие: A simple absorbing layer for em-radiation from a beam-plasma interaction system
Библ. ссылка: Berendeev E., Dudnikova G., Efimova A., Vshivkov V. A simple absorbing layer for em-radiation from a beam-plasma interaction system // Mathematical Methods in the Applied Sciences. - 2018. - Vol.41. - Iss. 18. - P.9276-9282. - ISSN 0170-4214. - EISSN 1099-1476.
Внешние системы: DOI: 10.1002/mma.5253; РИНЦ: 35728151; SCOPUS: 2-s2.0-85053697752; WoS: 000452611500066;
Реферат: eng: In this paper, a problem of taking into account the electromagnetic radiation power in a numerical simulation of electron beam-plasma interaction is considered. The numerical model is based on the particle-in-cell (PIC) method and the finite-difference time-domain (FDTD) scheme for solving Maxwell equations. As a boundary condition, it is proposed to use a simple layer of absorption, that is, artificial attenuation of an electromagnetic wave by multiplying the electromagnetic field in the boundary domain by a coefficient k < 1 depending on the distance to the boundary. The numerical experiments performed show that using such a layer for absorbing the electromagnetic radiation and for taking into account its power is efficient.
Ключевые слова: Plasma physics; PIC method; Particle in cell method; Numerical experiments; EM radiation; Boundary domains; Absorbing layers; A-coefficient; Time domain analysis; Numerical models; Maxwell equations; Finite difference time domain method; Electromagnetic waves; Electromagnetic wave emission; Electromagnetic fields; plasma physics; PIC-method; Maxwell equations; electromagnetic radiation; absorption conditions; Numerical methods; Beam plasma interactions;
Издано: 2018
Физ. характеристика: с.9276-9282
1. Taflove A. Computational Electrodynamics The Finite-Difference Time-Domain Method. Boston: London: Artech House Publishers; 1995.
2. Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans Electromagn Compat. 1981;23(4):377-382.
3. Liao ZP, Wong HL, Yang BP, Yuan YF. A transmitting boundary for transient wave analysis. Sci Sin A. 1984;27:1063-1076.
4. Berenger J. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys. 1994;114(2):185-200.
5. Gedney SD. An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices. IEEE Trans Antennas Propag. 1996;44(12):1630-1639.
6. Berendeev EA, Dudnikova GI, Efimova AA. PIC-simulation of the electron beam interaction with modulated density plasma. AIP Conference Proceedings. 2017;1895:120002.
7. Berendeev E, Boronina M, Dudnikova G, Efimova A, Vshivkov V. Supercomputer Modeling of Generation of Electromagnetic Radiation by Beam-Plasma Interaction. In: Sokolinsky L, Zymbler M, eds. Parallel Computational Technologies PCT Communications in Computer and Information Science, Vol. 753. Cham: Springer; 2017:247-260.
8. Postupaev VV, Burdakov AV, Ivanov IA, et al. Temporal structure of double plasma frequency emission of thin beam-heated plasma. Phys. Plasmas. 2013;20:092304.
9. Arzhannikov AV, Burdakov AV, Burmasov VS, Ivanov IA. Dynamics and spectral composition of subterahertz emission from plasma column due to two-stream instability of strong relativistic electron beam. IEEE Trans Terahertz Sci Technol. 2016;6:245-252.
10. Timofeev IV, Annenkov VV, Arzhannikov AV. Regimes of enhanced electromagnetic emission in beam-plasma interactions. Phys Plasmas. 2015;22:113109.
11. Annenkov VV, Timofeev IV, Volchok EP. Theory of a beam-driven plasma antenna. Phys Plasmas. 2016;23:053101.
12. Hockney RW, Eastwood JW. Computer Simulation Using Particles. Boca Raton, Florida USA: CRC Press; 1988.
13. Boris JP. Relativistic plasma simulation-optimization of a hybrid code. In: Fourth Conference on nu-merical Simulation of Plasmas; 1970; Washington:3-67.