Информация о публикации

Просмотр записей
Инд. авторы: Stoyanovskaya O.P., Glushko T.A., Snytnikov V.N., Snytnikov N.V.
Заглавие: Two-fluid dusty gas in smoothed particle hydrodynamics: fast and implicit algorithm for stiff linear drag
Библ. ссылка: Stoyanovskaya O.P., Glushko T.A., Snytnikov V.N., Snytnikov N.V. Two-fluid dusty gas in smoothed particle hydrodynamics: fast and implicit algorithm for stiff linear drag // Astronomy and Computing. - 2018. - Vol.25. - P.25-37. - ISSN 2213-1337.
Внешние системы: DOI: 10.1016/j.ascom.2018.08.004; РИНЦ: 35726002; SCOPUS: 2-s2.0-85053066025; WoS: 000451390700003;
Реферат: eng: Simulation of the dynamics of dust–gas circumstellar discs is crucial in understanding the mechanisms of planet formation. The dynamics of small grains in the disc is stiffly coupled to the gas, while the dynamics of grown solids is decoupled. Moreover, in some parts of the disc the concentration of the dust is low (dust to gas mass ratio is about 0.01), while in other parts it can be much higher. These factors place high requirements on the numerical methods for disc simulations. In particular, when gas and dust are simulated with two different fluids, explicit methods require very small timestep (must be less than dust stopping time tstop during which the velocity of a solid particle is equalized with respect to the gas velocity) to obtain solution, while some implicit methods require high temporal resolution to obtain acceptable accuracy. Moreover, recent studies underlined that for Smoothed particle hydrodynamics (SPH) when the gas and the dust are simulated with different sets of particles only high spatial resolution hststop guarantees suppression of numerical overdissipation due to gas and dust interaction. To address these problems, we developed a fast algorithm based on the ideas of (1) implicit integration of linear (Epstein) drag and (2) exact conservation of local linear momentum. We derived formulas for monodisperse dust–gas in two-fluid SPH and tested the new method on problems with known analytical solutions. We found that our method is a promising alternative for the previously developed two-fluid SPH scheme in case of stiff linear drag thanks to the fact that spatial resolution condition hststop is not required anymore for accurate results.
Ключевые слова: Hydrodynamics; Smoothed particle hydrodynamics; Protoplanetary discs; Implicit integration; Implicit algorithm; High temporal resolution; High spatial resolution; Epstein drag simulation; Numerical methods; Image resolution; Gases; Dust; Drag; Protoplanetary discs; Hydrodynamics; Epstein drag simulation; Spatial resolution;
Издано: 2018
Физ. характеристика: с.25-37
1. Andrews, M.J., O'Rourke, P.J., The multiphase Particle-in-Cell (MP-PIC) method for dense particulate flows. Int. J. Multiph. Flow. 22 (1996), 379–402.
2. Bai, X.N., Stone, J.M., Particle-gas dynamics with athena: Method and convergence. Astrophys. J. Suppl. 190 (2010), 297–310, 10.1088/0067-0049/190/2/297 arXiv:1005.4980.
3. Barrière-Fouchet, L., Gonzalez, J.F., Murray, J.R., Humble, R.J., Maddison, S.T., Dust distribution in protoplanetary disks. Vertical settling and radial migration. AAp 443 (2005), 185–194, 10.1051/0004-6361:20042249 arXiv:astro-ph/0508452.
4. Booth, R.A., Sijacki, D., Clarke, C.J., Smoothed particle hydrodynamics simulations of gas and dust mixtures. Mon. Not. R. Astron. Soc. 452 (2015), 3932–3947, 10.1093/mnras/stv1486 arXiv:1507.01007.
5. Cha, S.H., Nayakshin, S., A numerical simulation of a 'super-Earth’ core delivery from 100 to 8 au. Mon. Not. R. Astron. Soc. 415 (2011), 3319–3334, 10.1111/j.1365-2966.2011.18953.x arXiv:1010.1489.
6. Cha, S.H., Whitworth, A.P., Implementations and tests of Godunov-type particle hydrodynamics. Mon. Not. R. Astron. Soc. 340 (2003), 73–90, 10.1046/j.1365-8711.2003.06266.x.
7. Cuello, N., Gonzalez, J.F., Pignatale, F.C., Effects of photophoresis on the dust distribution in a 3D protoplanetary disc. Mon. Not. R. Astron. Soc. 458 (2016), 2140–2149, 10.1093/mnras/stw396 arXiv:1601.03662.
8. Dehnen, W., Aly, H., Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon. Not. R. Astron. Soc. 425 (2012), 1068–1082, 10.1111/j.1365-2966.2012.21439.x arXiv:1204.2471.
9. Epstein, P.S., On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23 (1924), 710–733, 10.1103/PhysRev.23.710.
10. Fulk, D.A., Quinn, D.W., An analysis of 1-D smoothed particle hydrodynamics kernels. J. Comput. Phys. 126 (1996), 165–180, 10.1006/jcph.1996.0128.
11. Gonzalez, J.F., Laibe, G., Maddison, S.T., Self-induced dust traps: overcoming planet formation barriers. Mon. Not. R. Astron. Soc. 467 (2017), 1984–1996, 10.1093/mnras/stx016 arXiv:1701.01115.
12. Haworth, T.J., Ilee, J.D., Forgan, D.H., Facchini, S., Price, D.J., Boneberg, D.M., Booth, R.A., Clarke, C.J., Gonzalez, J.F., Hutchison, M.A., Kamp, I., Laibe, G., Lyra, W., Meru, F., Mohanty, S., Panić, O., Rice, K., Suzuki, T., Teague, R., Walsh, C., Woitke, P., Community authors. Grand challenges in protoplanetary disc modelling. PASA, 33, 2016, e053, 10.1017/pasa.2016.45 arXiv:1608.01315.
13. Hubber, D.A., Rosotti, G.P., Booth, R.A., GANDALF - graphical astrophysics code for N-body dynamics and lagrangian fluids. Mon. Not. R. Astron. Soc. 473 (2018), 1603–1632, 10.1093/mnras/stx2405 arXiv:1709.04488.
14. Humphries, R.J., Nayakshin, S., Changes in the metallicity of gas giant planets due to pebble accretion. Mon. Not. R. Astron. Soc. 477 (2018), 593–615, 10.1093/mnras/sty569.
15. Hutchison, M., Price, D.J., Laibe, G., MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas. Mon. Not. R. Astron. Soc. 476 (2018), 2186–2198, 10.1093/mnras/sty367 arXiv:1802.03213.
16. Ishiki, S., Okamoto, T., Inoue, A.K., The effect of radiation pressure on dust distribution inside HII regions. Mon. Not. R. Astron. Soc. 474 (2018), 1935–1943, 10.1093/mnras/stx2833 ArXiv e-prints arXiv:1708.07137.
17. Laibe, G., Price, D.J., DUSTYBOX and DUSTYWAVE: two test problems for numerical simulations of two-fluid astrophysical dust-gas mixtures. Mon. Not. R. Astron. Soc. 418 (2011), 1491–1497, 10.1111/j.1365-2966.2011.19291.x arXiv:1106.1736.
18. Laibe, G., Price, D.J., Dusty gas with smoothed particle hydrodynamics - I. Algorithm and test suite. Mon. Not. R. Astron. Soc. 420 (2012), 2345–2364, 10.1111/j.1365-2966.2011.20202.x arXiv:1111.3090.
19. Laibe, G., Price, D.J., Dusty gas with smoothed particle hydrodynamics - II. Implicit timestepping and astrophysical drag regimes. Mon. Not. R. Astron. Soc. 420 (2012), 2365–2376, 10.1111/j.1365-2966.2011.20201.x arXiv:1111.3089.
20. Laibe, G., Price, D.J., Dust and gas mixtures with multiple grain species - a one-fluid approach. Mon. Not. R. Astron. Soc. 444 (2014), 1940–1956, 10.1093/mnras/stu1367 arXiv:1407.3569.
21. Lorén-Aguilar, P., Bate, M.R., Two-fluid dust and gas mixtures in smoothed particle hydrodynamics: a semi-implicit approach. Mon. Not. R. Astron. Soc. 443 (2014), 927–945, 10.1093/mnras/stu1173 arXiv:1406.3250.
22. Lorén-Aguilar, P., Bate, M.R., Two-fluid dust and gas mixtures in smoothed particle hydrodynamics II: an improved semi-implicit approach. Mon. Not. R. Astron. Soc. 454 (2015), 4114–4119, 10.1093/mnras/stv2262 arXiv:1509.08374.
23. Maddison, S.T., Humble, R.J., Murray, J.R., Building planets with dusty gas. Norris, R., Stootman, F., (eds.) Bioastronomy 2002: Life Among the Stars IAU Symposium, vol. 213, 2004, 231.
24. Marble, F.E., Dynamics of dusty gases. Annu. Rev. Fluid Mech. 2:1 (1970), 397–446, 10.1146/annurev.fl.02.010170.002145.
25. Miniati, F., A hybrid scheme for gas-dust systems stiffly coupled via viscous drag. J. Comput. Phys. 229 (2010), 3916–3937, 10.1016/j.jcp.2010.01.034 arXiv:1001.4794.
26. Monaghan, J.J., Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30 (1992), 543–574, 10.1146/annurev.aa.30.090192.002551.
27. Monaghan, J.J., Implicit SPH drag and dusty gas dynamics. J. Comput. Phys. 138 (1997), 801–820, 10.1006/jcph.1997.5846.
28. Monaghan, J.J., Kocharyan, A., SPH simulation of multi-phase flow. Comput. Phys. Comm. 87 (1995), 225–235, 10.1016/0010-4655(94)00174-Z.
29. Morris, J.P., Fox, P.J., Zhu, Y., Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136 (1997), 214–226, 10.1006/jcph.1997.5776.
30. Nigmatullin, R.I., 1990. Dynamics of Multiphase Media, Volume 1.
31. Price, D.J., Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231 (2012), 759–794, 10.1016/j.jcp.2010.12.011 arXiv:1012.1885.
32. Price, D.J., Wurster, J., Nixon, C., Tricco, T.S., Toupin, S., Pettitt, A., Chan, C., Laibe, G., Glover, S., Dobbs, C., Nealon, R., Liptai, D., Worpel, H., Bonnerot, C., Dipierro, G., Ragusa, E., Federrath, C., Iaconi, R., Reichardt, T., Forgan, D., Hutchison, M., Constantino, T., Ayliffe, B., Mentiplay, D., Hirsh, K., Lodato, G., 2017. Phantom: A smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics. PASA. arXiv:1702.03930.
33. Rice, W.K.M., Lodato, G., Pringle, J.E., Armitage, P.J., Bonnell, I.A., Accelerated planetesimal growth in self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 355 (2004), 543–552, 10.1111/j.1365-2966.2004.08339.x arXiv:astro-ph/0408390.
34. Saito, T., Marumoto, M., Takayama, K., Numerical investigations of shock waves in gas-particle mixtures. Evaluation of numerical methods for dusty-gas shock wave phenomena. Shock Waves 13 (2003), 299–322, 10.1007/s00193-003-0217-y.
35. Snytnikov, V.N., Stoyanovskaya, O.P., Clump formation due to the gravitational instability of a multiphase medium in a massive protoplanetary disc. Mon. Not. R. Astron. Soc. 428 (2013), 2–12, 10.1093/mnras/sts002 arXiv:1210.0971.
36. Sod, G.A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27 (1978), 1–31, 10.1016/0021-9991(78)90023-2.
37. Springel, V., The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364 (2005), 1105–1134, 10.1111/j.1365-2966.2005.09655.x arXiv:astro-ph/0505010.
38. Stone, J.M., Norman, M.L., ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. ApJSS 80 (1992), 753–790, 10.1086/191680.
39. Stoyanovskaya, O.P., Snytnikov, N.V., Snytnikov, V.N., Modeling circumstellar disc fragmentation and episodic protostellar accretion with smoothed particle hydrodynamics in cell. Astron. Comput. 21 (2017), 1–14, 10.1016/j.ascom.2017.09.001 arXiv:1809.01310.
40. Stoyanovskaya, O.P., Snytnikov, V.N., Vorobyov, E.I., Analysis of methods for computing the trajectories of dust particles in a gas-dust circumstellar disk. Astron. Rep. 61 (2017), 1044–1060, 10.1134/S1063772917120071 arXiv:1809.01295.
41. Stoyanovskaya, O.P., Vorobyov, E.I., Snytnikov, V.N., Analysis of numerical algorithms for computing rapid momentum transfers between the gas and dust in simulations of circumstellar disks. Astron. Rep. 62 (2018), 455–468, 10.1134/s1063772918060069 arXiv:1808.02867.
42. Vorobyov, E.I., Akimkin, V., Stoyanovskaya, O., Pavlyuchenkov, Y., Liu, H.B., Early evolution of viscous and self-gravitating circumstellar disks with a dust component. AandAP, 614, 2018, A98, 10.1051/0004-6361/201731690 arXiv:1801.06898.
43. Vorobyov, E.I., Basu, S., The burst mode of protostellar accretion. ApJ 650 (2006), 956–969, 10.1086/507320 arXiv:astro-ph/0607118.
44. Weidenschilling, S.J., Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180 (1977), 57–70, 10.1093/mnras/180.1.57.
45. Williams, J.P., Best, W.M.J., A parametric modeling approach to measuring the gas masses of circumstellar disks. ApJ, 788, 2014, 59, 10.1088/0004-637X/788/1/59 arXiv:1312.0151.
46. Xiong, Q., Deng, L., Wang, W., Ge, W., Sph method for two-fluid modeling of particlefluid fluidization. Chem. Eng. Sci. 66 (2011), 1859–1865.
47. Yang, C.C., Johansen, A., Integration of particle-gas systems with stiff mutual drag interaction. Astrophys. J. Suppl., 224, 2016, 39, 10.3847/0067-0049/224/2/39 arXiv:1603.08523.
48. Zhu, Z., Nelson, R.P., Dong, R., Espaillat, C., Hartmann, L., Dust filtration by planet-induced gap edges: Implications for transitional disks. ApJ, 755, 2012, 6, 10.1088/0004-637X/755/1/6 arXiv:1205.5042.