Информация о публикации

Просмотр записей
Инд. авторы: Meleshko S.V., Grigoriev Y.N., Lin F., Flood A.E., Suriyawichitseranee A.
Заглавие: Group analysis of population balance equations
Библ. ссылка: Meleshko S.V., Grigoriev Y.N., Lin F., Flood A.E., Suriyawichitseranee A. Group analysis of population balance equations // Актуальные проблемы прикладной математики и механики: Тезисы докладов IX Всероссийской конференции с международным участием, посвященной памяти академика А.Ф. Сидорова / Ответственный редактор: М.Ю. Филимонов. - 2018. - Екатеринбург: Институт математики и механики УрО РАН им. Н.Н. Красовского. - P.5-6. - ISBN: 978-5-8295-0588-2.
Внешние системы: РИНЦ: 36269035;
Реферат: eng: The integro-differential population balance equation describing aggregation processes was proposed more than 100 years ago. Population balance equations have been used to model a wide range of processes including polymerization, crystallization, cloud formation and cell dynamics. The lack of analytical solutions necessitates the use of numerical techniques. One of the methods allowing to reduce solutions of differential equations to a simpler form is the group analysis method. Recently the group analysis method was extended to equations with nonlocal terms [ 1, 2, 3]. The presentation is devoted to the construction of invariant solutions of several models of population balance equations.
Издано: 2018
Физ. характеристика: с.5-6
Конференция: Название: IX Всероссийская конференция «Актуальные проблемы прикладной математики и механики» с международным участием
Город: Абрау-Дюрсо
Даты проведения: 2018-09-03 - 2018-09-08
Цитирование:
1. Yu. N. Grigoriev and S. V. Meleshko. Investigation of invariant solutions of the Boltzmann kinetic equation and its models, 1986. Preprint of Institute of Theoretical and Applied Mechanics.
2. S. V. Meleshko. Methods for Constructing Exact Solutions of Partial Differential Equations. Springer, New York, 2005.
3. Yu. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, and S. V. Meleshko. Symmetries of integro-differential equations and their applications in mechanics and plasma physics. Lecture Notes in Physics, Vol. 806. Springer, Berlin / Heidelberg, 2010.