ФАНО России

Федеральное государственное бюджетное учреждение науки Институт вычислительных технологий Сибирского отделения Российской академии наук (ИВТ СО РАН)

ПРОГРАММА ДИСЦИПЛИНЫ

Численные методы механики сплошной среды: алгоритмы, подходы и комплексы программ

Направление подготовки: 09.06.01 Информатика и вычислительная техника

Уровень образования: подготовка кадров высшей квалификации

Квалификация выпускника: Исследователь. Преподаватель-исследователь

Направленности подготовки:

05.13.11 – Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей;

05.13.18 - Математическое моделирование, численные методы и комплексы программ;

05.25.05 – Информатика и вычислительная техника;

25.00.35 - Геоинформатика

Статус дисциплины: Блок 1 «Дисциплины» Вариативная часть. Дисциплины по выбору

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 09.06.01 Информатика и вычислительная техника, утвержденного приказом Министерства образования и науки Российской Федерации от 30 июля 2014 года № 875, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 года № 33685.

Рецензент: д.фм.н., профессор, зав. лабораторией	Depun	Черный С.Г.
Составитель рабочей программы: к.фм.н, с.н.с.	2	Чирков Д.В.
Рабочая программа утверждена на заседании	и Ученого совета ИВТ СО РАН	Н, протокол № <u>1</u> от
« <u>15</u> » <u>Оі</u> 201 <u>6</u> г. Председатель Ученого совета	Willoun	Ю.И. Шокин

академик

1. Цель и задачи освоения дисциплины

Целью освоения дисциплины «Численные методы механики сплошной среды: алгоритмы, подходы и комплексы программ» является изучение современных методов численного решения задач механики жидкости и газа, особенностей их программной реализации, а также возможностей коммерческих пакетов прикладных программ.

Для достижения цели ставятся следующие задачи освоения дисциплины.

- Изучение современных подходов к построению численных методов для решения уравнений механики сплошной среды, их области применимости.
- Изучение методов построения экономичных разностных схем для решения многомерных задач.
- Изучение основных принципов программирования вычислительных алгоритмов, обеспечивающих модульность, расширяемость программного кода, распараллеливание вычислений.
- Изучение возможностей и основ пакетов прикладных программ ANSYS и CADRUN.

2. Место дисциплины в структуре программы подготовки научно-педагогических кадров в аспирантуре по направлению подготовки кадров высшей квалификации 09.06.01 Информатика и вычислительная техника

Дисциплина «Численные методы механики сплошной среды: алгоритмы, подходы и комплексы программ» реализуется в рамках Блока 1 «Дисциплины» образовательной программы аспирантуры по направлению подготовки 09.06.01 Информатика и вычислительная техника по всем профилям (направленностям).

Общая трудоемкость дисциплины по учебному плану составляет 3 зач.ед. (108 часов), из них лекций — 28 часов, практических занятий — 8 часов, самостоятельной работы — 72 часа. Дисциплина реализуется на 2 курсе, в 4 семестре, продолжительность обучения — 1 семестр.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины «Численные методы механики сплошной среды: алгоритмы, подходы и комплексы программ» направлен на формирование компетенций или отдельных их элементов в соответствии с ФГОС ВО по направлению подготовки 09.06.01 Информатика и вычислительная техника:

а) универсальных (УК):

УК-1 - Способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях.

б) общепрофессиональных (ОПК):

- **ОПК-1** владение методологией теоретических и экспериментальных исследований в области профессиональной деятельности;
- **ОПК-2** владение культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий;
- **ОПК-3** способность к разработке новых методов исследования и их применению в самостоятельной научно-исследовательской деятельности в области профессиональной деятельности;
- **ОПК-5** способность объективно оценивать результаты исследований и разработок, выполненных другими специалистами и в других научных учреждениях.

в) профессиональных (ПК):

ПК-4 – способность разрабатывать новые математические модели процессов и явлений, развивать аналитические и приближенные методы их исследования, выполнять реализацию эффективных численных методов и алгоритмов в виде комплексов проблемно-ориентированных программ для проведения вычислительного эксперимента.

4. Объем дисциплины и виды учебной работы

Вид учебной работы		Всего		
		час.		
ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ		108		
Аудиторные занятия		36		
Лекции (Л)		28		
Практические занятия (ПЗ)		8		
Семинары (С)		0		
Контроль самостоятельной работы (КСР)		0		
Самостоятельная работа (СР):				
Самоподготовка (проработка и повторение лекционного материала и материала		72		
учебников и учебных пособий, подготовка к семинарским и практическим занятиям)		/2		
и самостоятельное изучение теоретического курса.				
Вид промежуточной аттестации:		экзамен		

5. Разделы дисциплины и виды занятий

		Объем часов					
№ п\п	Наименование темы (раздела) дисциплины	Всего	Из них				
		(ауд. ч.)	Л	C	ПЗ	КСР	CP
1.	Иерархия моделей механики жидкости и газа		4				4
2.	Подходы к численному решению многомерных задач механики жикдости и газа		8				8
3.	Современные численные методы решения трехмерных уравнений механики жикдости и газа		8				12
4.	Программная реализация вычислительных алгоритмов		4				12
5.	Пакеты прикладных программ для расчета течений жидкости и газа		4		8		36
	ИТОГО		28	0	8	0	72

6. Структура и содержание дисциплины

Лекции

Раздел 1. Иерархия моделей механики жидкости и газа

Лекция 1. Иерархия моделей механики сплошных сред. Уравнения Больцмана. Уравнения Навье-Стокса движения сжимаемого газа и несжимаемой жидкости. Уравнения Эйлера. Интегральные законы сохранения. Стационарные и нестационарные задачи.

Лекция 2. Модели турбулентных течений

Осреднение по Рейнольдсу уравнений Навье-Стокса. Гипотеза Буссинеска. Двухпараметрические модели турбулентности для замыкания уравений Рейнольдса: ke, SST. Модель рейнольдсовых напряжений. Модель больших турбулентных структур (LES). Области применения моделей. Их достоинства и недостатки.

Раздел 2. Подходы к численному решению многомерных задач механики жикдости и газа

Лекция 3. Консервативные схемы и метод конечных объемов.

Понятие консервативности. Примеры консервативных и неконсервативных схем. Понятие предельной и полной консервативности для нестационарных задач. Метод конечных объемов (МКО) как основной способ построения консервативных схем. Дискретизация интегрального закона сохранения. Связь МКО с методом конечных разностей. Способы вычисления невязких и вязких потоков через грани ячейки. Порядок аппроксимации схем на основе метода конечных объемов. Вычисление геометрических величин в МКО для 2D и 3D случая. Замечание об использовании неструктурированных сеток.

Лекция 4. Противопотоковые схемы для линейных и нелинейных уравнений и систем.

Недостатки центрально-разностной аппроксимации конвективных членов. Противопотоковая аппроксимация. Линейный случай: скалярное уравнение и система линейных уравнений. Проблема построения противопотоковых схем для нелинейных гиперболических уравнений. Задача о распаде произвольного разрыва. Схемы Годунова и Роу.

Лекция 5. Явные и неявные разностные схемы для гиперболических и параболических уравнений. Линеаризация нелинейных неявных схем.

Ограничения по устойчивости для явных схем. Неявные схемы для гиперболических и параболических уравнений. Линеаризация нелинейных неявных схем. Проблема с реализацией алгоритмов в многомерном случае: решение разреженной СЛАУ большой размерности. Достоинства и недостатки неявных схем.

Лекция 6. Реализация неявных схем в многомерном случае. Метод дробных шагов (метод расщепления). Метод приближенной факторизации. Аппроксимация и устойчивость схем в многомерном случае. Условная устойчивость схемы приближенной факторизации в 3D случае.

Лекция 7. Метод Гаусса-Зейделя. Альтернативные подходы к реализации неявных схем в многомерном случае. Метод Гаусса-Зейделя и его частный случай — приближенная LU факторизация. Использование альтернативных решателей для системы уравнений Ax = b с разреженной матрицей A. Итерационный метод установления. Сравнительный анализ подходов.

<u>Раздел 3. Современные численные методы решения трехмерных уравнений механики</u> жидкости и газа

Лекция 8. Численные методы решения уравнений движения сжимаемого газа. Современные схемы для решения уравнений газовой динамики и уравнений Навье-Стокса движения сжимаемого газа. Метод приближенной факторизации при решении многомерных задач. Распространение схем на нестационарный случай.

Лекция 9. Методы решения уравнений движения несжимаемой жидкости. Классификация подходов к решению уравнений движения несжимаемой жидкости. Метод искусственной сжимаемости. Неявная схема конечных объемов для стационарных задач.

Лекция 10. Проекционные методы дробных шагов для уравнений движения несжимаемой жидкости. Метод коррекции давления SIMPLE для расчета стационарных задач на разнесенной сетке.

Лекция 11. Проекционные методы дробных шагов для уравнений движения несжимаемой жидкости. Метод коррекции давления SIMPLE. Распространение метода на случай решения нестационарных задач на совмещенной сетке.

Лекция 12. Постановка и реализация краевых условий. Реализация краевых условий для уравнений Эйлера и Навье-Стокса. Входная и выходная границы, удаленная граница, твердая стенка. Основные подходы к численной реализации краевых условий. Явная и неявная реализация.

Раздел 4. Программная реализация вычислительных алгоритмов

Лекция 13. Основные требования и подходы к программированию. Особенности программирования численных методов решения многомерных задач. Методика составления структуры (блок-схемы) программы. Модульное программирование.

Лекция 14. Распараллеливание алгоритмов. Технологии MPI и OpenMP распараллеливания.

Раздел 5. Пакеты прикладных программ для расчета течений жидкости и газа

Лекция 15. Обзор алгоритмов, положенных в основу пакета ANSYS Fluent/CFX.

Лекция 16. Основы работы в ANSYS Fluent/CFX. Подготовка геометрических данных для задачи о течении в криволинейном канале. Построение сеток и задание граничных условий. Настройки решателя, запуск и обработка расчета.

Практические занятия

Практическое занятие 1. Обзор пакета CADRUN. Модели, алгоритмы. Структура программы. Расчет течения жидкости в проточном тракте гидротубины. Постановка задачи, подготовка данных и запуск расчета.

Практическое занятие 2. Обработка результатов расчета в CADRUN.

7. Текущий контроль и промежуточная аттестация. Фонд оценочных средств.

Текущий контроль по дисциплине проводится в форме опроса, а также оценки вопроса-ответа в рамках участия обучающихся в обсуждениях и различных контрольных мероприятиях по оцениванию фактических результатов обучения, осуществляемых преподавателем дисциплины.

Объектами оценивания выступают:

- учебная дисциплина активность на занятиях, своевременность выполнения различных видов заданий, посещаемость занятий;
- степень усвоения теоретических знаний и уровень овладения практическими умениями и навыками по всем видам учебной работы, проводимых в рамках семинаров и самостоятельной работы.

Оценивание обучающегося на занятиях осуществляется с использованием нормативных оценок по четырехбальной системе (5 — отлично, 4 — хорошо, 3 — удовлетворительно, 2 — неудовлетворительно).

Промежуточная аттестация аспирантов по дисциплине проводится в форме **экзамена** в соответствии с локальным актом ИВТ СО РАН — Положением о промежуточной аттестации аспирантов ИВТ СО РАН по программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре и является обязательной.

Промежуточная аттестация осуществляется в период зачетно-экзаменационной сессии в соответствии с Графиком учебного процесса. Обучающийся допускается к экзамену в случае выполнения всех учебных заданий и мероприятий, предусмотренных настоящей программой. В случае наличия учебной задолженности (пропущенных занятий и/или невыполненных заданий) аспирант отрабатывает пропущенные занятия и выполняет задания.

Оценивание обучающегося на промежуточной аттестации осуществляется с использованием нормативных оценок на экзамене по четырехбальной системе (5 – отлично, 4 – хорошо, 3 – удовлетворительно, 2 –неудовлетворительно).

Оценивание аспиранта на промежуточной аттестации в форме экзамена

Оценка экза-				
мена	Требования к знаниям и критерии выставления оценок			
(нормативная)				
Отлично	Аспирант демонстрирует всестороннее, систематическое и глубокое знание материала, а также умение свободно выполнять задания, предусмотренные программой; усвоил основную литературу и знаком с дополнительной литературой, рекомендованной программой; в полном объеме усвоил взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии.			
Хорошо	Аспирант демонстрирует полное знание учебно-программного материала; успешно выполнил предусмотренные в программе задания; усвоил основную литературу, рекомендованную в программе; показал систематический характер знаний и способность к самостоятельному пополнению и обновлению знаний.			
Удовлетвори- тельно	Аспирант демонстрирует знания основного учебно-программного материала в объеме, необходимом для предстоящей работы; в целом справился с выполнением заданий, предусмотренных программой; знаком с основной литературой, рекомендованной программой. При этом, хотя аспирант допускает погрешности в ответе на экзамене и при выполнении экзаменационных заданий, у него есть необходимые знания для их устранения под руководством преподавателя.			
Неудовлетво- рительно	Аспирант при ответе обнаруживает существенные пробелы в знаниях основного учебно-программного материала, допускает принципиальные ошибки в выполнении предусмотренных программой заданий.			

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Форма контроля знаний	Вид	Примечание
Опрос, Дискуссия	Текущий кон-	Подготовка и ответ на семинарском занятии по
	троль	заданным вопросам
		Обсуждение проблематики предмета
Домашнее задание: про-	Текущий кон-	Домашнее задание
верочные работы	троль	
Экзамен	Промежуточная	Вопросы к экзамену
	аттестация	

Вопросы к экзамену

- 1. Законы сохранения. Преобразование координат. Представление уравнений в дивергентной и недивергентной форме.
- 2. Аппроксимация дифференциальных операторов и разностных схем.
- 3. Сходимость и устойчивость. Необходимый спектральный признак Неймана.
- 4. Методы решения системы уравнений Ах=b с разреженной матрицей А.
- 5. Скалярная, векторная и матричная прогонка.
- 6. Метод установления. Понятие полной аппроксимации.
- 7. Основные разностные схемы решения одномерных нелинейных гиперболических уравнений.
- 8. Явные разностные схемы для гиперболических и параболических уравнений. Достоинства и недостатки явных схем.
- 9. Схемы Рунге-Кутты для аппроксимации производной по времени в уравнениях с частными производными.
- 10. Консервативные схемы. Определение и способы построения.
- 11. Метод конечных объемов.
- 12. Связь метода конечных объемов с методом конечных разностей.
- 13. Способы аппроксимации невязких потоков через грани ячеек.
- 14. Аппроксимация вязких потоков в методе конечных объемов.
- 15. Сравнение методов конечных разностей, конечных объемов на примере линейного уравнения переноса. Достоинства и недостатки подходов.
- 16. Противопотоковые схемы для скалярного уравнения переноса и системы линейных гиперболических уравнений.
- 17. Построение противопотоковых схем для нелинейных уравнений.
- 18. Построение противопотоковых схем на основе решения задачи о распаде произвольного разрыва. Схема Годунова, Схема Роу.
- 19. Неявные схемы для одномерных гиперболических и параболических уравнений. Реализация нелинейных схем. Метод линеаризации.
- 20. Особенности реализации неявных алгоритмов в многомерном случае.
- 21. Метод дробных шагов (метод расщепления). Аппроксимация и устойчивость в многомерном случае.
- 22. Метод приближенной факторизации по направлениям. Аппроксимация и устойчивость в многомерном случае.
- 23. Устойчивость схемы приближенной факторизации для гиперболических уравнений в трехмерном случае.
- 24. Метод Гаусса-Зейделя и его частный случай метод LU-факторизации. Устойчивость метода в многомерном случае.
- 25. Методы, основанные на использовании альтернативных решателей системы алгебраических уравнений с разреженной матрицей.
- 26. Краевые условия для уравнений Эйлера и Навье-Стокса. Входная, выходная границы, твердая стенка. Их реализация
- 27. Аппроксимация дифференциальных операторов на неравномерных сетках.
- 28. Повышение порядка аппроксимации на расширенном шаблоне.
- 29. Реконструкция переменных на грань ячейки в методе конечных объемов.
- 30. Понятие монотонности разностной схемы. Теорема Годунова.
- 31. Способы монотонизации схем высокого порядка аппроксимации.
- 32. Схема Бима Уорминга для уравнений газовой динамики.
- 33. Схема МакДональда Брили для уравнений Навье-Стокса движения сжимаемого газа.
- 34. Схема расщепления по физическим процессам и пространственным направлениям для уравнений газовой динамики.
- 35. Схема предиктор-корректор для решения уравнений Навье-Стокса сжимаемого газа.
- 36. Противопотоковая схема конечных объемов для уравнений газовой динамики.

- 37. Метод искусственной сжимаемости для решения уравнений Навье-Стокса несжимаемой жидкости.
- 38. Метод дробных шагов (коррекции давления) для решения уравнений Навье-Стокса несжимаемой жидкости.

8. Учебно-методическое обеспечение дисциплины

Основная литература

- 1. Ковеня В.М. Алгоритмы расщепления при решении многомерных задач аэрогазодинамики. Новосибирск. Издательство СО РАН. 2014. 280 с.
- 2. Ковеня В. М., Чирков Д.В. Методы конечных разностей и конечных объемов для решения задач математической физики: Учебное пособие / Новосиб. гос. ун-т. Новосибирск, 2013.
- 3. Ковеня В. М. Разностные методы решения многомерных задач: Курс лекций / Новосиб. гос. ун-т. Новосибирск, 2004. 146 с.
- 4. Лебедев А. С., Черный С. Г. Практикум по численному решению уравнений в частных производных. Учебное пособие / Новосиб. гос. ун-т. Новосибирск, 2000. 136 с.
- 5. Черный С.Г., Лапин В.Н., Есипов Д.В., Куранаков Д.С. Методы моделирования зарождения и распространения трещин: монография. Новосибирск: Изд-во СО РАН. 2016. 312 с
- 6. Хакимзянов Г. С., Черный С. Г. Методы вычислений в 4 ч.: Учебное пособие / Новосиб. гос. ун-т. Новосибирск, 2008. Часть 3. Численные методы решения задач для уравнений параболического и эллиптического типов. 163 с.
- 7. Годунов С. К. Рябенький В. С. Разностные схемы: Введение в теорию. М.: Наука, 1973. 400 с.
- 8. Самарский А. А. Теория разностных схем. Изд. 3. М.: Наука, 1989. 616 с.

Дополнительная литература

- 1. Toro E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics: 2nd Ed., Springer-Verlag, 1999.
- 2. Fletcher C. A. J., Computational Techniques for Fluid Dynamics: Vol. I, II. 2nd Ed., Springer-Verlag, Berlin, 1991.
- 3. Ferziger J., Peric M. Computational Methods for Fluid Dynamics: 3rd Ed., Springer, 2002.
- 4. ANSYS Fluent. Theory guide. Release 15.0. 2013.
- 5. ANSYS CFX. Theory guide. Release 15.0. 2013.

Программное обеспечение и Интернет-ресурсы

Пакет прикладных программ CADRUN.

9. Материально-техническое обеспечение дисциплины

- аудиторный фонд ИВТ СО РАН;
- проекционное оборудование;
- рабочее место с выходом в Интернет;
- библиотечный фонд ИВТ СО РАН.
- Вычислительных кластер Новосибирского государственного университета.

Дополнения	и изменения і	в рабочей	программе
3a	/	учебі	ный год

В рабочую программу научно-исследовательской работы по направлению подготовки 09.06.01 Информатика и вычислительная техника по направленностям подготовки 05.13.11 — Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей, 05.13.18 — Математическое моделирование, численные методы и комплексы программ, 05.25.05 — Информатика и вычислительная техника, 25.00.35 — Геоинформатика вносятся следующие изменения: