Информация о публикации

Просмотр записей
Инд. авторы: Kuranakov D.S., Esipov D.V., Lapin V.N., Cherny S.G.
Заглавие: Modification of the boundary element method for computation of three-dimensional fields of strain-stress state of cavities with cracks
Библ. ссылка: Kuranakov D.S., Esipov D.V., Lapin V.N., Cherny S.G. Modification of the boundary element method for computation of three-dimensional fields of strain-stress state of cavities with cracks // Engineering Fracture Mechanics. - 2016. - Vol.153. - P.302-318. - ISSN 0013-7944. - EISSN 1873-7315.
Внешние системы: DOI: 10.1016/j.engfracmech.2015.09.052; РИНЦ: 26892845; SCOPUS: 2-s2.0-84953791188; WoS: 000370061500020;
Реферат: eng: In order to solve the three-dimensional problem of crack initiation in a cavity and propagation in an elastic medium under the effect of pumping a viscous liquid inside the cavity, a modification of the boundary element method is used for determining the strain-stress state in vicinity of the cavity with the crack connected to it, loaded with the pumped-in viscous liquid. The foundation of the method is equations of elastic equilibrium written in the form of boundary integral equations. The conventional boundary element method cannot be used for this problem because the boundary integral equation for displacements degenerates at the crack. In the known dual boundary element method, with the purpose of eliminating this drawback of the conventional method, an additional boundary integral relation at the discontinuous part of the boundary is constructed. Therewith, discontinuing elements are introduced, which allow to approximate integral relations and regularize and calculate singular integrals. The goal of this study is to modify the dual boundary element method for three-dimensional model of crack propagating from cavity under the effect of pumped-in viscous liquid in an elastic unbounded medium. One of the problems is a fully three-dimensional modeling of the hydraulic crack process starting from well, for the solution of which the developed profit-proved modification of the dual method was successfully employed. The research results are presented thereof. © 2015 Elsevier Ltd.
Ключевые слова: Propagation direction criteria; Elastic equilibrium; Crack growth; Boundary element method; Hydraulic fracturing; Three-dimensional model;
Издано: 2016
Физ. характеристика: с.302-318
Цитирование:
1. Li S., Mear M.E., Xiao L. Symmetric weak-form integral equation method for three-dimensional fracture analysis. Comput Methods Appl Mech Engng 1998, 151:435-459. 10.1016/S0045-7825(97)00199-0.
2. Gupta P., Duarte C.A. Simulation of non-planar three-dimensional hydraulic fracture propagation. Int J Numer Anal Methods Geomech 2014, 38:1397-1430. 10.1002/nag.2305.
3. Vandamme L., Curran J.H. A three-dimensional hydraulic fracturing simulator. Int J Numer Methods Engng 1989, 28:909-927. 10.1002/nme.1620280413.
4. Mi Y., Aliabadi M.H. Three-dimensional crack growth simulation using BEM. Comput Struct 1994, 52:871-878. 10.1016/0045-7949(94)90072-8.
5. Morales R.H., Brady B.H., Ingraffea A.R. SPE 25889 Three-dimensional analysis and visualization of the wellbore and the fracturing process in inclined wells. SPE rocky mt reg permeability reserv symmposium 1993, 461-467. Society of Petroleum Engineers. 10.2118/25889-MS.
6. Sousa J.L., Carter B.J., Ingraffea A.R. Numerical simulation of 3D hydraulic fracture using newtonian and power-law fluids. Int J Rock Mech Min Sci 1993, 30:1265-1271. 10.1016/0148-9062(93)90106-N.
7. Carter BJ, Desroches J, Ingraffea AR, Wawrzynek PA. Simulating fully 3D hydraulic fracturing, In: Modeling in Geomechanics, 2000, p. 525-557.
8. Dong C.Y., De Pater C.J. Numerical modeling of crack reorientation and link-up. Adv Engng Softw 2002, 33:577-587. 10.1016/S0965-9978(02)00057-1.
9. Rungamornrat J., Wheeler M., Mear M. A numerical technique for simulating non-planar evolution of hydraulic fractures. Proc SPE annu tech conf exhib 2005, SPE 96968. Society of Petroleum Engineers. 10.2523/96968-MS.
10. Lazarus V., Buchholz F.G., Fulland M., Wiebesiek J. Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments. Int J Fract 2008, 153:141-151. 10.1007/s10704-008-9307-2.
11. Cherny S., Chirkov D., Lapin V., Muranov A., Bannikov D., Miller M., et al. Two-dimensional modeling of the near-wellbore fracture tortuosity effect. Int J Rock Mech Min Sci 2009, 46:992-1000. 10.1016/j.ijrmms.2009.01.001.
12. Aidagulov G., Alekseenko O., Chang F.F., Bartko K., Cherny S., Esipov D., et al. Model of hydraulic fracture initiation from the notched open hole. SPE Saudi Arab sect annu tech symp exhib 2015, Society of Petroleum Engineers. 10.2118/178027-MS.
13. Rizzo F.J. An integral equation approach to boundary value problems of classical elastostatics. Q Appl Math 1967, 25:83-95.
14. Cherny SG, Lapin VN, Esipov DV, Kuranakov DS. Nekotorye osobennosti chislennogo modelirovaniya gidrorazryva plasta (Certain Particulars of Numeric Modeling of Hydraulic Fracturing). In: Mod probl appl math mech theory, exp pract dedic to 90th anniv from birthd Acad NN Yanenko, Novosibirsk: Federal State Unitary Enterprise Scientific and Technology Center "Informregister" 2011.
15. Alekseenko O.P., Potapenko D.I., Cherny S.G., Esipov D.V., Kuranakov D.S., Lapin V. 3D Modeling of fracture initiation from perforated noncemented wellbore. SPE J 2013, 18:589-600. 10.2118/151585-MS.
16. Briner A., Chavez J.C., Nadezhdin S., Alekseenko O., Gurmen N., Cherny S., et al. Impact of perforation tunnel orientation and length in horizontal wellbores on fracture initiation pressure in maximum tensile stress criterion model for tight gas fields in the sultanate of oman. SPE middle east oil gas show conf 2015, Society of Petroleum Engineers. 10.2118/172663-MS.
17. Cruse T.A. Application of the boundary-integral equation method to three dimensional stress analysis. Comput Struct 1973, 3:509-527. 10.1016/0045-7949(73)90094-1.
18. Cruse TA. Numerical evaluation of elastic stress intensity factors by the boundary-integral equation method; 1972.
19. Snyder M.D., Cruse T.A. Boundary-integral equation analysis of cracked anisotropic plates. Int J Fract 1975, 11:315-328. 10.1007/BF00038898.
20. Blandford G.E., Ingraffea A.R., Liggett J.A. Two-dimensional stress intensity factor computations using the boundary element method. Int J Numer Methods Engng 1981, 17:387-404. 10.1002/nme.1620170308.
21. Esipov D.V., Kuranakov D.S., Lapin V.N., Cherny S.G. Mnogozonny metod granichnyh elementov i yego primenenie k zadache initsiatshii gidrorazryva iz perforirovannoy obsazhennoy skvazhyny (Multizone boundary element method and its application for the problem of initiation of hydraulic fracture from cased perforated wellbore). Comput Technol 2011, 16:13-26.
22. Esipov DV, Cherny SG, Kuranakov DS, Lapin VN. Modelirovaniye mnogozonnym metodom granichnykh elementov protsessa initsiatsii treshiny gydrorazryva plasta is perforirovannoy obsazhennoy skvazhyny (Modeling by Multizone Boundary Element Method of Initiation of the Hydraulic Fracture from Perforated Wellbore). In: Pap int conf Modern probl appl math mech theory, exp pract dedic to 90th anniv from birthd Acad NN Yanenko, Novosibirsk: Federal State Unitary Enterprise Scientific and Technology Center "Informregister" 2011. p. 45-63.
23. Crouch S.L. Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. Int J Numer Methods Engng 1976, 10:301-343. 10.1002/nme.1620100206.
24. Cruse T.A. Boundary element analysis in computational fracture mechanics 2012, vol. 1. Springer Science & Business Media.
25. Hong H.-K., Chen J.-T. Derivations of integral equations of elasticity. J Engng Mech 1988, 114:1028-1044.
26. Bueckner HF. Field singularities and related integral representations. Methods Anal Solut Crack Probl 1973, Springer, p. 239-314.
27. Chen J.T., Hong H.-K. Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series. Appl Mech Rev 1999, 52:17. 10.1115/1.3098922.
28. Watson J.O. Hermitian cubic boundary elements for plane problems of fracture mechanics. Res Mech 1982, 4:23-42.
29. Watson J.O. Hermitian cubic and singular elements for plane strain. Dev Bound Elem Methods 1986, 4:1-28.
30. Portela A., Aliabadi M.H., Rooke D.P. The dual boundary element method: effective implementation for crack problems. Int J Numer Methods Engng 1992, 33:1269-1287. 10.1002/nme.1620330611.
31. Mi Y., Aliabadi M.H. Dual boundary element method for three-dimensional fracture mechanics analysis. Engng Anal Bound Elem 1992, 10:161-171. 10.1016/0955-7997(92)90047-B.
32. Barr DIT. Leading-edge analysis for correct simulation of interface separation and hydraulic fracturing by doctor of philosophy in mechanical engineering; 1991.
33. Alekseyenko O.P., Yesipov D.V., Kuranakov D.S., Lapin V.N., Cherny S.G. Dvumernya poshagovay model' rasprostraneniya treshiny gidrorazryva (two-dimensional step-by-step model of hydrofracture crack propagation). Bull NSU Ser Math Mech IT 2011, 11:36-59.
34. Aliabadi M.H. The boundary element method. Appl Solids Struct 2002, 598.
35. Cisilino A.P., Aliabadi M.H. Three-dimensional BEM analysis for fatigue crack growth in welded components. Int J Press Vessel Pip 1997, 70:135-144. 10.1016/S0308-0161(96)00031-2.
36. Guiggiani M., Krishnasamy G., Rudolphi T.J., Rizzo F.J. A general algorithm for the numerical solution of hypersingular boundary integral equations. J Appl Mech 1992, 59:604. 10.1115/1.2893766.
37. Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook: by Hiroshi Tada, with the cooperation of Paul C. Paris and George R. Irwin; 1985.
38. Esipov D.V., Kuranakov D.S., Lapin V.N., Cherny S.G. Mathematical modelling of hydraulic fracturing. Comput Technol 2014, 19:22-61.
39. Chang F.F., Bartko K., Dyer S., Aidagulov G., Suarez-Rivera R., Lund J. Multiple fracture initiation in openhole without mechanical isolation: first step to fulfill an ambition. SPE hydraul fract technol conf 2014, Society of Petroleum Engineers. 10.2118/168638-MS.