Информация о публикации

Просмотр записей
Инд. авторы: Belyaev N.D., Geydarov N.A., Ivanov K.S., Lebedev V.V., Nudner I.S., Ragulin V.V., Semenov K.K., Zakharov Y.N., Zimin A.I.
Заглавие: Modeling cohesionless and cohesive soils erosion near oil platforms of gravity type
Библ. ссылка: Belyaev N.D., Geydarov N.A., Ivanov K.S., Lebedev V.V., Nudner I.S., Ragulin V.V., Semenov K.K., Zakharov Y.N., Zimin A.I. Modeling cohesionless and cohesive soils erosion near oil platforms of gravity type // 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). - 2015: Institute of Electrical and Electronics Engineers. - P.5-8. - ISBN: 978-1-4673-7698-3.
Внешние системы: DOI: 10.1109/SCP.2015.7342037; РИНЦ: 25043331; SCOPUS: 2-s2.0-84960129583; WoS: 000380403400002;
Реферат: eng: This paper presents numerical simulation results of the flow effect on the cohesionless and cohesive soils erosion at the base of the gravity-type offshore platform model. Movement of the medium in which erosion occurs is described by Navier-Stokes equations. The medium is considered to be a two-component fluid in the case of the cohesive soil erosion, one component being more viscous and dense and simulating the soaked soil behavior. The medium is considered to be homogeneous for the cohesionless soil, the erosion occurring by the transport of solid particles. The results of calculations for three-dimensional problems are presented. © 2015 IEEE.
Ключевые слова: Two-component; Three-dimensional problems; Solid particles; Soil behaviors; Off shore platforms; Nonhomogeneous media; Cohesive soils; Cohesionless soil; Viscosity; Soils; Process control; Offshore structures; Numerical models; Mathematical models; Liquids; Erosion; Drilling platforms; Computer simulation; Viscosity; Soil; Numerical simulation; Numerical models; Nonhomogeneous media; Mathematical model; Liquids; Navier Stokes equations;
Издано: 2015
Физ. характеристика: с.5-8
Цитирование:
1. L. G. Shchemelinin, A. V. Utin, N. D. Belyaev, V. V. Lebedev, I. S. Nudner and K. K. Semenov. Experimental studies regarding the efficiency of seabed soil protection near offshore structures//24th Int. Ocean and Polar Eng. Conf. “ISOPE-2014”. Busan, South Korea. 2014. Vol. 2. P. 625-631.
2. D. V. Babchik, N. D. Belyaev, V. V. Lebedev, I. S. Nudner, K. K. Semenov and L. G. Shchemelinin. Experimental investigations of local scour caused by currents and regular waves near drilling barge foundation with cutout into stern//5th Int. Conf. Applicat. Physical Modelling to Port and Coastal Protection. Varna, Bulgaria. 2014. Vol. 2. P. 114-124.
3. A. Roulund, B. M. Sumer, J. Fredsoe and J. Michelsen. Numerical and experimental investigation of flow and scour around a circular pile//J. of Fluid Mechanics. 2005. Vol. 534. P. 351-401.
4. A. Khosronejad, C. Hill, S. Kang and F. Sotiropoulos. Computational and experimental investigation of scour past laboratory models of stream restoration rock structures//Advances in Water Resources. 2013. Vol. 54. P. 191-207.
5. B. M. Sumer and J. Fredsoe. The Mechanics of Scour in the Marine Environment. World Scientific Publishing, London, 2002.
6. H. Breusers, G. Nicollet and H. Shen. Local scour around cylindrical piers//J. of Hydraulic Research. 1977. Vol. 15. No. 3. P. 211-252.
7. G. J. C. M. Hoffmans and H. J. Verheij. Scour manual. A.A. Balkema, Rotterdam, 1997.
8. R. Whitehouse. Scour at Marine Structures: A Manual for Practical Applications. Thomas Telford Publications, London, 1998.
9. Y. Zakharov, A. Zimin, I. Nudner and V. Ragulin. Two-component incompressible fluid model for simulating the cohesive soil erosion//Applied Mechanics and Materials. 2015. Vol. 725-726. P. 361-368.
10. K. K. Semenov, V. V. Lebedev, I. S. Nudner, N. A. Geidarov, K. S. Ivanov, Y. N. Zakharov, N. D. Belyaev, A. V. Mishina and L. G. Schemelinin. Impact of waves and currents on the soil near gravity-type offshore platform foundation: Numerical and experimental studies//25th Int. Ocean and Polar Eng. Conf. “ISOPE-2015”. Rodos, Greece. 2015. P. 807-815.
11. B. Brors. Numerical modeling of flow and scour at pipelines//J. of Hydraulic Eng.. 1999. Vol. 125. No. 5. P. 511-522.
12. O. M. Belotserkovskiy. Numerical Modelling in Continuum Mechanics, 2nd ed.. Fizmatlit, Moscow, 1994. (in Russian)
13. S. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corp., USA, 1980.
14. Yu. N. Zakharov. Gradient Iterative Methods for Solving the Problems of Hydrodynamics. Nauka, Moscow, 2004. (in Russian)