Информация о публикации

Просмотр записей
Инд. авторы: Babin S.A., Podivilov E.V., Kharenko D.S., Bednyakova A.E., Fedoruk M.P., Shtyrina O.V., Kalashnikov V.L., Apolonski A.A.
Заглавие: SRS-Driven Evolution of Dissipative Solitons in Fiber Lasers
Библ. ссылка: Babin S.A., Podivilov E.V., Kharenko D.S., Bednyakova A.E., Fedoruk M.P., Shtyrina O.V., Kalashnikov V.L., Apolonski A.A. SRS-Driven Evolution of Dissipative Solitons in Fiber Lasers // Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers. - 2016. - P.277-316. - ISBN 978-3-527-41332-4.
Внешние системы: DOI: 10.1002/9783527686476.ch12; РИНЦ: 27018952; SCOPUS: 2-s2.0-84978341906;
Реферат: eng: This chapter presents the theoretical description of highly chirped dissipative soliton (HCDS) based on the approximate analytical solution of Ginzburg-Landau equation in high-chirp limit and its stability analysis. It reviews the regime of highly chirped pulses in an Yb-doped fiber laser with passive mode-locking via nonlinear polarization evolution (NPE) and tests the model predictions. Scaling of the pulse energy in the all normal-dispersion (ANDi) laser generating highly chirped DSs is possible by increasing its cavity length or mode-field diameter of the fiber. The chapter focuses on the comprehensive theoretical and experimental study of the new physical effects defining DS formation and evolution in the presence of strong stimulated Raman scattering (SRS). The detailed analysis of the SRS-driven evolution of DS has been performed in frames of nonlinear Schrodinger equation (NSE) in which the SRS term is added and the model has been compared with the experiment.
Ключевые слова: Nonlinear Schrodinger equation; Nonlinear polarization evolution; Highly chirped dissipative soliton; Fiber laser cavity; All normal-dispersion laser; Stimulated Raman scattering-driven evolution;
Издано: 2016
Физ. характеристика: с.277-316
Цитирование:
1. Duling, I.N. III (1991) Subpicosecond all-fibre erbium laser. Electron. Lett., 27 (6), 544-545.
2. Fermann, M.E., Andrejco, M.J., Stock, M.L., Silberberg, Y., and Weiner, A.M. (1993) Passive mode locking in erbium fiber lasers with negative group delay. Appl. Phys. Lett., 62 (9), 910-912.
3. Nakazawa, M., Yoshida, E., and Kimura, Y. (1993) Generation of 98 fs optical pulses directly from an erbium-doped fibre ring laser at 1.57 μm. Electron. Lett., 29 (1), 63-65.
4. Ilday, F.O., Wise, F.W., and Sosnowski, T.S. (2002) High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror. Opt. Lett., 27 (17), 1531-1533.
5. Lim, H., Ilday, F.O., and Wise, F.W. (2003) Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser. Opt. Lett., 28 (8), 660-662.
6. Fernandez, A., Fuji, T., Poppe, A., Fürbach, A., Krausz, F., and Apolonski, A. (2004) Chirped-pulse oscillators:a route to high-power femtosecond pulses without external amplification. Opt. Lett., 29 (12), 1366-1368.
7. Haus, H.A., Tamura, K., Nelson, L.E., and Ippen, E.P. (1995) Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment. IEEE J. Quantum Electron., 31 (3), 591-598.
8. Ilday, F.O., Buckley, J.R., Clark, W., and Wise, F.W. (2004) Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett., 92 (21), 213 902/1-4.
9. Dudley, J.M., Finot, C., Richardson, D.J., and Millot, G. (2007) Selfsimilarity in ultrafast nonlinear optics. Nat. Phys., 3 (9), 597-603.
10. Bale, B.G. and Wabnitz, S. (2010) Strong spectral filtering for a modelocked similariton fiber laser. Opt. Lett., 35 (14), 2466-2468.
11. Oktem, B., Ulgudur., C., and Ilday, F.O. (2010) Soliton-similariton fibre laser. Nat. Photonics, 4 (5), 307-311.
12. Kalashnikov, V.L., Podivilov, E., Chernykh, A., Naumov, S., Fernandez, A., Graf, R., and Apolonski, A. (2005) Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment. New J. Phys., 7, 217.
13. Chong, A., Buckley, J.R., Renninger, W.H., and Wise, F.W. (2006) Allnormal- dispersion femtosecond fiber laser. Opt. Express, 14 (21), 10-095-10-100.
14. Renninger, W.H., Chong, A., and Wise, F.W. (2008) Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A, 77 (2), 023 814/1-4.
15. Vanin, E., Korytin, A., Sergeev, A., Anderson, D., Lisak, M., and Vázquez, L. (1994) Dissipative optical solitons. Phys. Rev. A, 49 (4), 2806-2811.
16. Kerner, B.S. and Osipov, V.V. (1994) Autosolitons: A New Approach to Problems of Self-Organization and Turbulence, Kluwer Academic Publishers.
17. Akhmediev, N. and Ankiewicz, A. (2005) Dissipative Solitons, Lecture Notes in Physics, vol. 661, Springer-Verlag, Berlin.
18. Akhmediev, N. and Ankiewicz, A. (2008) Dissipative Solitons: From Optics to Biology and Medicine, Springer-Verlag.
19. Grelu, P. and Akhmediev, N.N. (2012) Dissipative solitons for mode-locked lasers. Nat. Photonics, 6 (2), 84-92.
20. Renninger, W.H. and Wise, F.W. (2012) Dissipative soliton fiber laser, in. Fiber Lasers (ed. O.G. Okhotnikov), John Wiley & Sons, Inc., pp. 97-134.
21. Haus, H.A. and Fellow, L. (2000) Mode-Locking of Lasers. IEEE J. Sel. Top. Quantum Electron., 6 (6), 1173-1185.
22. Buckley, J.R., Wise, F.W., Ilday, F.O., and Sosnowski, T.S. (2005) Femtosecond fiber lasers with pulse energies above 10 nJ. Opt. Lett., 30 (14), 1888-1890.
23. Chong, A., Renninger, W.H., and Wise, F.W. (2007) All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. Opt. Lett., 32 (16), 2408-2410.
24. Lefrançois, S., Kieu, K., Deng, Y., Kafka, J.D., and Wise, F.W. (2010) Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of largearea photonic crystal fiber. Opt. Lett., 35 (10), 1569-1571.
25. Soto-Crespo, J.M., Akhmediev, N.N., Afanasjev, V.V., and Wabnitz, S. (1997) Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion. Phys. Rev. E, 55 (4), 4783-4796.
26. Podivilov, E.V. and Kalashnikov, V.L. (2005) Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation. JETP Lett., 82 (8), 467-471.
27. Kharenko, D.S., Shtyrina, O.V., Yarutkina, I.A., Podivilov, E.V., Fedoruk, M.P., and Babin, S.A. (2011) Highly chirped dissipative solitons as a oneparameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation. J. Opt. Soc. Am. B, 28 (10), 2314-2319.
28. Kharenko, D.S., Shtyrina, O.V., Yarutkina, I.A., Podivilov, E.V., Fedoruk, M.P., and Babin, S.A. (2012) Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser. Laser Phys. Lett., 9 (9), 662-668.
29. Kharenko, D.S., Podivilov, E.V., Apolonski, A.A., and Babin, S.A. (2012) 20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator. Opt. Lett., 37 (19), 4104-4106.
30. Bednyakova, A.E., Babin, S.A., Kharenko, D.S., Podivilov, E.V., Fedoruk, M.P., Kalashnikov, V.L., and Apolonski, A. (2013) Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering. Opt. Express, 21 (18), 20 556.
31. Babin, S.A., Podivilov, E.V., Kharenko, D.S., Bednyakova, A.E., Fedoruk, M.P., Kalashnikov, V.L., and Apolonski, A. (2014) Multicolour nonlinearly bound chirped dissipative solitons. Nat. Commun., 5, 4653.
32. Newell, A.C. (1974) Nonlinear Wave Motion, Lectures in Applied Mathematics, vol. 15, American Mathematical Society, Providence, RI.
33. Komarov, K.P. (1986) Theory of stationary ultrashort pulses in solid-state lasers with passive mode locking. Opt. Spektrosk., 60 (2), 379-384.
34. Chernykh, A.I. and Turitsyn, S.K. (1995) Soliton and collapse regimes of pulse generation in passively modelocking laser systems. Opt. Lett., 20 (4), 398-400.
35. Salhi, M., Haboucha, A., Leblond, H., and Sanchez, F. (2008) Theoretical study of figure-eight all-fiber laser. Phys. Rev. A, 77 (3), 033 828/1-9.
36. Ortaç, B., Baumgartl, M., Limpert, J., and Tünnermann, A. (2009) Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers. Opt. Lett., 34 (10), 1585-1587.
37. Naumov, S., Fernandez, A., Graf, R., Dombi, P., Krausz, F., and Apolonski, A. (2005) Approaching the microjoule frontier with femtosecond laser oscillators. New J. Phys., 7, 216-216.
38. Leblond, H., Salhi, M., Hideur, A., Chartier, T., Brunel, M., and Sanchez, F. (2002) Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser. Phys. Rev. A, 65 (6), 063 811/1-9.
39. Komarov, A., Leblond, H., and Sanchez, F. (2005) Quintic complex Ginzburg-Landau model for ring fiber lasers. Phys. Rev. E, 72 (2), 025 604/1-4.
40. Bale, B.G., Kutz, J.N., Chong, A., Renninger, W.H., and Wise, F.W. (2008) Spectral filtering for high-energy modelocking in normal dispersion fiber lasers. J. Opt. Soc. Am. B, 25 (10), 1763.
41. Akhmediev, N.N., Eleonskii, V.M., and Kulagin, N.E. (1987) Exact first-order solutions of the nonlinear Schrodinger equation. Theor. Math. Phys., 72 (2), 809-818.
42. Soto-Crespo, J.M., Akhmediev, N.N., and Afanasjev, V.V. (1996) Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation. J. Opt. Soc. Am. B, 13 (7), 1439-1449.
43. Soto-Crespo, J.M., Akhmediev, N.N., and Town, G. (2002) Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber. J. Opt. Soc. Am. B, 19 (2), 234-242.
44. Kalashnikov, V., Podivilov, E., Chernykh, A., and Apolonski, A. (2006) Chirped-pulse oscillators: theory and experiment. Appl. Phys. B, 83 (4), 503-510.
45. Kalashnikov, V.L. and Apolonski, A. (2009) Chirped-pulse oscillators: a unified standpoint. Phys. Rev. A, 79 (4), 043 829/1-10.
46. Kalashnikov, V.L. (2009) Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation. Phys. Rev. E, 80 (4), 046 606/1-8.
47. Ablowitz, M. and Horikis, T. (2009) Solitons in normally dispersive modelocked lasers. Phys. Rev. A, 79 (6), 063 845.
48. Mathews, J. and Walker, R.L. (1964) Mathematical Methods of Physics, Benjamin.
49. Chang, W., Ankiewicz, A., Soto-Crespo, J., and Akhmediev, N. (2008) Dissipative soliton resonances. Phys. Rev. A, 78 (2), 023 830/1-9.
50. Akhmediev, N., Soto-Crespo, J., and Grelu, P., (2008) Roadmap to ultrashort record high-energy pulses out of laser oscillators,. Phys. Lett. A, 372 (17), 3124-3128.
51. Ding, E., Grelu, P., and Kutz, J.N., (2011) Dissipative soliton resonance in a passively mode-locked fiber laser,. Opts. Lett., 36 (7), 1146-1148.
52. Renninger, W.H., Chong, A., and Wise, F.W. (2008) Giant-chirp oscillators for short-pulse fiber amplifiers. Opt. Lett., 33 (24), 3025-3027.
53. Wise, F.W., Chong, A., and Renninger, W.H. (2008) High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion.. Laser Photonics Rev., 2 (1-2), 58-73.
54. Kalashnikov, V.L. and Chernykh, A.I. (2007) Spectral anomalies and stability of chirped-pulse oscillators. Phys. Rev. A, 75 (3), 033 820/1-5.
55. Tang, D.Y., Zhao, L.M., Zhao, B., and Liu, A.Q. (2005) Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A, 72 (4), 043 816/1-9.
56. Chong, A., Liu, H., Renninger, W.H., and Wise, F.W. (2008) Femtosecond erbium-doped fiber lasers with large normal cavity dispersion. 2008 Conference on Lasers and Electro-Optics, IEEE, pp. 1-2.
57. Kobtsev, S.M. and Smirnov, S.V. (2011) Fiber lasers mode-locked due to nonlinear polarization evolution: Golden mean of cavity length. Laser Phys., 21 (2), 272-276.
58. Boyd, R.W. (2003) Nonlinear Optics, 2nd edn, Academic Press, San Diego, CA.
59. Ding, E., Lefrançois, S., Kutz, J.N., and Wise, F.W. (2011) Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multimode fiber. IEEE J. Quantum Electron., 47 (5), 597-606.
60. Chong, A., Renninger, W.H., and Wise, F.W. (2008) Environmentally stable all-normal-dispersion femtosecond fiber laser. Opt. Lett., 33 (10), 1071-1073.
61. Jiang, K., Ouyang, C., Shum, P.P., Wu, K., and Wong, J.H. (2012) High-energy dissipative soliton with MHz repetition rate from an all-fiber passively modelocked laser. Opt. Commun., 285 (9), 2422-2425.
62. Kobtsev, S.M., Kukarin, S.V., Fedotov, Y.S., and Ivanenko, A.V. (2011) Highenergy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces. Laser Phys., 21 (2), 308-311.
63. Kobtsev, S.M., Kukarin, S., and Fedotov, Y.S. (2008) Ultra-low repetition rate mode-locked fiber laser with high-energy pulses. Opt. Express, 16 (26), 21-936-21-941.
64. Kelleher, E.J.R., Travers, J.C., Ippen, E.P., Sun, Z., Ferrari, A.C., Popov, S.V., and Taylor, J.R. (2009) Generation and direct measurement of giant chirp in a passively mode-locked laser. Opt. Lett., 34 (22), 3526-3528.
65. Nyushkov, B., Denisov, V., Kobtsev, S., Pivtsov, V., Kolyada, N., Ivanenko, A., and Turitsyn, S. (2010) Generation of 1.7-μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity. Laser Phys. Lett., 7 (9), 661-665.
66. Koliada, N.A., Nyushkov, B.N., Ivanenko, A.V., Kobtsev, S.M., Harper, P., Turitsyn, S.K., Denisov, V.I., and Pivtsov, V.S. (2013) Generation of dissipative solitons in an actively modelocked ultralong fibre laser. Quantum Electron., 43 (2), 95-98.
67. Nielsen, C.K., Ortaç, B., Schreiber, T., Limpert, J., Hohmuth, R., Richter, W., and Tünnermann, A. (2005) Selfstarting self-similar all-polarization maintaining Yb-doped fiber laser. Opt. Express, 13 (23), 9346-9351.
68. Schultz, M., Karow, H., Prochnow, O., Wandt, D., Morgner, U., and Kracht, D. (2008) All-fiber ytterbium femtosecond laser without dispersion compensation. Opt. Express, 16 (24), 19-562-19-567.
69. Mortag, D., Wandt, D., Morgner, U., Kracht, D., and Neumann, J. (2011) Sub-80-fs pulses from an all-fiberintegrated dissipative-soliton laser at 1 μm. Opt. Express, 19 (2), 546-551.
70. Zhao, L.M., Bartnik, A.C., Tai, Q.Q., and Wise, F.W. (2013) Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror. Opt. Lett., 38 (11), 1942-1944.
71. Erkintalo, M., Aguergaray, C., Runge, A., and Broderick, N.G.R. (2012) Environmentally stable all-PM all-fiber giant chirp oscillator. Opt. Express, 20 (20), 22-669-22-674.
72. Aguergaray, C., Runge, A., Erkintalo, M., and Broderick, N.G.R. (2013) Raman-driven destabilization of mode-locked long cavity fiber lasers:fundamental limitations to energy scalability. Opt. Lett., 38 (15), 2644-2646.
73. Kieu, K., Renninger, W.H., Chong, A., and Wise, F.W. (2009) Sub-100 fs pulses at watt-level powers from a dissipativesoliton fiber laser. Opt. Lett., 34 (5), 593-595.
74. Kharenko, D.S., Podivilov, E.V., Apolonski, A.A., and Babin, S.A. (2013) All-fiber highly-chirped dissipative soliton oscillator and its scaling.. SPIE Proc., 8601, 86 012H-86 012H-6.
75. Schadt, D. and Jaskorzynska, B. (1987) Frequency chirp and spectra due to self-phase modulation and stimulated Raman scattering influenced by pulse walk-off in optical fibers. J. Opt. Soc. Am. B, 4 (5), 856-862.
76. Kalashnikov, V.L. (2014) Dissipative solitons in presence of quantum noise. Chaotic Model. Simul., 1, 29-37.
77. Turitsyn, S.K., Bale, B.G., and Fedoruk, M.P. (2012) Dispersion-managed solitons in fibre systems and lasers. Phys. Rep., 521 (4), 135-203.
78. Blow, K. and Wood, D. (1989) Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron., 25 (12), 2665-2673.
79. Agrawal, G.P. (2007) Nonlinear Fiber Optics, Academic Press.
80. Hollenbeck, D. and Cantrell, C.D. (2002) Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B, 19 (12), 2886-2892.
81. Trebino, R. (2002) Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, Springer-Verlag.
82. Akhmanov, S.A., Vysloukh, V.A., and Chirkin, A.S. (1992) Optics of Femtosecond Laser Pulses, AIP, New York.
83. Grelu, P. and Akhmediev, N. (2004) Group interactions of dissipative solitons in a laser cavity: the case of 2+1. Opt. Express, 12 (14), 3184-3189.
84. Stratmann, M., Pagel, T., and Mitschke, F. (2005) Experimental observation of temporal soliton molecules. Phys. Rev. Lett., 95 (14), 143 902.
85. Komarov, A., Leblond, H., and Sanchez, F. (2005) Multistability and hysteresis phenomena in passively mode-locked fiber lasers. Phys. Rev. A, 71 (5), 053 809.
86. Tang, D., Zhao, L., and Zhao, B. (2004) Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction. Appl. Phys. B, 80 (2), 239-242.
87. Jang, J.K., Erkintalo, M., Murdoch, S.G., and Coen, S. (2013) Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photonics, 7 (8), 657-663.
88. Chong, A., Renninger, W.H., and Wise, F.W. (2008) Properties of normaldispersion femtosecond fiber lasers. J. Opt. Soc. Am. B, 25 (2), 140-148.
89. Kumar, S. and Hasegawa, A. (1995) Suppression of the Gordon-Haus noise by a modulated Raman pump. Opt. Lett., 20 (18), 1856-1858.
90. Sorokin, E., Kalashnikov, V., Naumov, S., Teipel, J., Warken, F., Giessen, H., and Sorokina, I. (2003) Intra- and extra-cavity spectral broadening and continuum generation at 1.5 μm using compact low-energy femtosecond Cr:YAG laser.. Appl. Phys. B, 77 (2-3), 197-204.
91. Sander, M.Y., Ippen, E.P., and Kärtner, F.X. (2010) Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti: sapphire lasers. Opt. Express, 18 (5), 4948-4960.
92. Dudley, J.M. and Coen, S. (2006) Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78 (4), 1135-1184.
93. Cox, J.A., Putnam, W.P., Sell, A., Leitenstorfer, A., and Kärtner, F.X. (2012) Pulse synthesis in the singlecycle regime from independent mode-locked lasers using attosecondprecision feedback. Opt. Lett., 37 (17), 3579-3581.
94. Wirth, A., Hassan, M.T., Grguras, I., Gagnon, J., Moulet, A., Luu, T.T., Pabst, S., Santra, R., Alahmed, Z.A., Azzeer, A.M., Yakovlev, V.S., Pervak, V., Krausz, F., and Goulielmakis, E. (2011) Synthesized light transients. Science (New York), 334 (6053), 195-200.
95. Turitsyn, S.K., Babin, S.A., El-Taher, A.E., Harper, P., Churkin, D.V., Kablukov, S.I., Ania-Castañón, J.D., Karalekas, V., and Podivilov, E.V. (2010) Random distributed feedback fibre laser. Nat. Photonics, 4 (4), 231-235.
96. Turitsyn, S.K., Babin, S.A., Churkin, D.V., Vatnik, I.D., Nikulin, M., and Podivilov, E.V. (2014) Random distributed feedback fibre lasers. Phys. Rep., 542 (2), 133-193.
97. Ishikawa-Ankerhold, H.C., Ankerhold, R., and Drummen, G.P.C. (2012) Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules, 17 (4), 4047-132.
98. Xu, C. and Wise, F.W. (2013) Recent advances in fiber lasers for nonlinear microscopy. Nat. Photonics, 7, 875.
99. Schibli, T.R., Hartl, I., Yost, D.C., Martin, M.J., Marcinkevičius, A., Fermann, M.E., and Ye, J. (2008) Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nat. Photonics, 2 (6), 355-359.
100. Cerullo, G. and De Silvestri, S. (2003) Ultrafast optical parametric amplifiers. Rev. Sci. Instrum., 74 (1), 1.
101. Pupeza, I., Holzberger, S., Eidam, T., Carstens, H., Esser, D., Weitenberg, J., Rußbüldt, P., Rauschenberger, J., Limpert, J., Udem, T., Tünnermann, A., Hänsch, T.W., Apolonski, A., Krausz, F., and Fill, E. (2013) Compact highrepetition- rate source of coherent 100 eV radiation. Nat. Photonics, 7 (8), 608-612.