Информация о публикации

Просмотр записей
Инд. авторы: Churuksaeva V.V., Starchenko A.V.
Заглавие: Mathematical modeling of a river stream based on a shallow water approach
Библ. ссылка: Churuksaeva V.V., Starchenko A.V. Mathematical modeling of a river stream based on a shallow water approach // Procedia Computer Science. - 2015. - Vol.66. - P.200-209. - EISSN 1877-0509.
Внешние системы: РИНЦ: 25554347;
Реферат: eng: Flood control problems as well as problems connected with wastewater discharge into rivers are issues of current importance. Depth averaged shallow water equations are used to model flows where water depth is much less than the horizontal dimension of the computational area and the free surface greatly influences the flow. The present work is focused on developing the mathematical model, applying the unsteady 2D shallow water equations, and constructing a numerical method for computing the river flow in extensive spatial areas. A finite volume solver for turbulent shallow water equations is presented. Some computational examples were carried out to investigate the applicability of the model. The comparison between the numerical solution and experimental results shows that the depth averaged model correctly represents flow patterns in the cases described and nonlinear effects in a river flow.
Ключевые слова: river flow; numerical modeling; finite volume method; depth-averaged shallow water model;
Издано: 2015
Физ. характеристика: с.200-209
Цитирование:
1. Cea, L., & Vazquez-Cendon, M. (2012). Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations. Journal of Computational Physics (231), pp. 3317-3339.
2. Cea, L., Puertas, J., & Vazquez-Cendon, M.-E. (2007, September). Depth averaged modelling of turbulent shallow water flow with wet-dry fonts. Archives of Computational Methods in Engineering, 14 (3), pp. 303-341.
3. Chaouat, B., & Schiestel, R. (2002). Reynolds stress transport modelling for steady and unsteady channel flows with wall injection. Journal of Turbulence, 3, pp. 1-16.
4. Chu, V. H., & Babarutsi, S. (1988). Confinement and bed-friction effects in shallow turbulent mixing layers. Journal of Hydraulic Engineering, 10 (114), pp. 1257-1274.
5. Duc, B., Wenka, T., & Rodi, W. (2004, September). Numerical modeling of bed deformation in laboratory channels. Journal of Hydraulic Engineering, 9, pp. 894-904.
6. Finaud-Guyot, P., Delenne, C., Guinot, V., & Llovel, C. (2011). 1D-2D coupling for river flow modeling. Comptes Rendus Mecanique (339), pp. 226-234.
7. Hou, J., Simons, F., Mahgoub, M., & Hinkelmann, R. (2013). A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography.	Computer Methods in Applied Mechanics and Engineering (257), pp. 126-149.
8. Kang, S., & Sotiropoulos, F. (2012). Numerical modeling of 3D turbulent free surface flow in natural waterways. Advances in Water Resources (40), pp. 23-36.
9. Kang, S., Lightbody, A., Hill, C., & Sotiropoulos, F. (2011). High-resolution numerical simulation of turbulence in natural waterways. Advances in Water Resources, 34, pp. 98-113.
10. Lyubimova, T. P., Lepihin, A. P., & Parshakova, Y. A. (2010). Tiunov, A. I. (2010). Chislennoe modelirovanie razbavleniya i perenosa vysokomineralizovannyh rassolov v turbulentnyh potokah. Vychislitel'naya mekhanika sploshnyh sred, pp. 68-79.
11. McGuirk, J. J., & Rodi, W. (1978). A depth-averaged mathematical model for the near field of side discharges into open channel flow. Journal of Fluid Mechanics, 88, pp. 761-781.
12. Olsen, N. R., & Stokseth, S. (1995). Three-dimensional numerical modelling of water flow in a river with large bed roughness. Journal of Hydraulic Research, 33, pp. 571-581.
13. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. River2D Hydrodynamic Model for Fish Habitat. (2002). Retrieved 2015 10-06 from River2D: http://www.river2d.ualberta.ca/.
14. Rodi, V. (1984). Models of turbulence in the environment (Modeli turbulentnosti okruzhayuscheiy srediy). Methods of Measuring Turbulent Flows (Metodi rascheta turbulentikh techenii), pp. 276-378.
15. Sandiv, S. K., Sotiropoulos, F., & Odgaard, A. J. (1998 January). Three-dimensional numerical model for flow through natural rivers. Journal of Hydraulic Engineering, 124 (1), pp. 13-24.
16. Sauvaget, P., David, E., & Soares, C. (2000). Modelling tidal currents on the coast of Portugal. Coastal Engineering (40), pp. 393-409.
17. Sedov, L. I. (2013). Mekhanika v SSSR za 50 let. Moskva: Ripol Klassik.
18. Uijttewaal, W. (2014). Hydrodynamics of shallow flows: application to rivers. Journal of Hydraulic Research, 52 (2), pp. 157-172.
19. Uijttewaal, W., & Booij, R. (2000). Effects of shallowness on the development. Physics of Fluids, 2 (12), pp. 392-402.
20. Van Leer, B. (1979). Towards the ultimate conservative difference scheme. Journal of Computational Physics, pp. 10-136.
21. Yu, L., & Righetto, A. M. (2001). Depth-averaged k-omega turbulence model and application. Advances in Engineering Software (32), pp. 375-394.
22. Yu, L., & Zhu, S. P. (1993). Numerical simulation of discharged waste heat and contaminants into the south estuary of the Yangtze River. Mathematical and Computer Modelling, 18 (12), pp. 107-123.