Информация о публикации

Просмотр записей
Инд. авторы: Кокшенев В.В., Михеев П.А., Сущенко С.П.
Заглавие: Сравнительный анализ быстродействия селективного и группового режимов повторной передачи транспортного протокола
Библ. ссылка: Кокшенев В.В., Михеев П.А., Сущенко С.П. Сравнительный анализ быстродействия селективного и группового режимов повторной передачи транспортного протокола // Автоматика и телемеханика. - 2017. - № 2. - С.65-81. - ISSN 0005-2310.
Внешние системы: РИНЦ: 28903784;
Реферат: rus: Предложена модель виртуального соединения, управляемого транспортным протоколом в режимах селективного и группового отказа в виде цепи Маркова с дискретным временем, учитывающая влияние протокольных параметров размера окна и длительности тайм-аута ожидания подтверждений, вероятности искажения сегментов в отдельных звеньях тракта передачи данных на пропускную способность транспортного соединения. Проведен анализ зависимости пропускной способности управляющей процедуры от протокольных параметров, уровня ошибок в каналах связи, длительности круговой задержки. Предложен метод выбора протокольных параметров.
Ключевые слова: длительность тайм-аута; размер окна; быстродействие виртуального соединения; цепь Маркова; тракт передачи данных; транспортный протокол;
Издано: 2017
Физ. характеристика: с.65-81
Цитирование:
1. Fall K., Stevens R. TCP/IP Illustrated, Volume 1: The Protocols (2nd Edition). Addison-Wesley Professional Computing Series, 2012.
2. Богуславский Л.Б. Управление потоками данных в сетях ЭВМ. М.: Энергоатомиздат, 1984.
3. Boguslavskij L.B., Gelenbe E. Analytical Models of Data Link Control Procedures in Packet-switching Computer Networks // Autom. Remote Control. 1980. V. 41. No. 7. P. 1033-1042.
4. Gelenbe E., Labetoulle J., Pujolle G. Performance Evaluation of the HDLC Protocol // Comput. Networks. 1978. V. 2. Iss. 4/5. P. 409-415.
5. Кокшенев В.В., Сущенко С.П. Анализ быстродействия асинхронной процедуры управления звеном передачи данных // Вычислительные технологии. 2008. Т. 15. Спец. выпуск № 5. C. 61-65.
6. Кокшенев В.В., Михеев П.А., Сущенко С.П. Анализ селективного режима отказа транспортного протокола в нагруженном тракте передачи данных // Вестн. ТГУ. Сер. Управление, вычислит. техника и информатика. 2013. № 3 (24). С. 78-94.
7. Calleari C., Giordano S., Pagano M., et al. A Survey of Congestion Control Mechanisms in Linux TCP // Communications in Computer and Information Science: Distributed Computer and Communication Networks 17th Int. Conf., DCCN 2013, Moscow, Russia, October 7-10, 2013. Revised Selected Papers. Vishnevsky V.; KozyrevD.; Larionov A. (Eds.). 2014. P. 28-42.
8. Vasenin V.A., Simonova G.I. Mathematical Models of Traffic Control in Internet: New Approaches Based of TCP/AQM Schemes // Autom. Remote Control. 2005. V. 66. No. 8. P. 1274-1286.
9. Bogoyavlenskaya O.Yu. Analysis of the Random Flow Generated by the Feedback Transport Protocol in a Data Transfer Network // Autom. Remote Control. 2003. V. 64. No. 12. P. 1882-1889.
10. Bogoyavlenskaya O.Yu. Probabilistic Model of the Algorithms of Distributed Control Protocol in the Internet Network // Autom. Remote Control. 2009. V. 70. No. 1. P. 107-117.
11. Mikadze I.S., Khocholava V.V. On a Model of Information Transmission Through Unreliable Communication Channel // Autom. Remote Control. 2004. V. 65. No. 8. P. 1250-1254.
12. Arvidsson A., Krzesinski A. A Model of a TCP Link // Proc. 15th Int. Teletraffic Congr. Specialist Seminar. 2002.
13. Altman E., Avrachenkov K., Barakat C. A Stochastic Model of TCP/IP with Stationary Random Loss // Comput. Communication Review. 2000. V. 30. No. 4. P. 231-242.
14. Olsen Y. Stochastic Modeling and Simulation of the TCP Protocol // Uppsala Dissertations in mathematics 28. 2003.
15. Kassa D.F. Analytic Models of TCP Performance // PhD Thesis, University of Stellenbosch. 2005.
16. Bogoiavlenskaia O. Discrete Model of TCP Congestion Control Algorithm with Round Dependent Loss Rate // Internet of Things, Smart Spaces, and Next Generation Networks and Systems. 2015. V. 9247 of the series Lect. Notes in Computer Science. P. 190-197.
17. Giordano S., Pagano M., Russo F., et al. Modeling TCP Startup Performance // J. Math. Sci. 2014. V. 200. Iss. 4. P. 424-431.
18. Kravets O.Ya. Mathematical Modeling of Parameterized TCP Protocol // Autom. Remote Control. 2013. V. 74. No. 7. P. 1218-1224.
19. Wang J.,Wen J.,Han Y.,atal. Achieving High Throughput and TCP Reno Fairness in Delay-based TCP over Large Networks // Frontiers Comput. Sci. 2014. V. 8. Iss. 3. P. 426-439.
20. Nikitinskiy M.A., Chalyy D.Ju. Performance Analysis of Trickles and TCP Transport Protocols under High-load Network Conditions // Automat. Control Comput. Sci. 2013. V. 47. No. 7. P. 359-365.
21. Kokshenev V.V., Suschenko S.P. Analytical Model of the TCP Reno Congestion Control Procedure through a Discrete-Time Markov Chain // Communications in Computer and Inform. Sci.: Distributed Computer and Communication Networks 17th Int. Conf., DCCN 2013, Moscow, Russia, October 7-10, 2013. Revised Selected Papers. Vishnevsky V.; Kozyrev D.; Larionov A. (Eds.) 2014. P. 124-135.
22. Ivanovskii V.B. Properties of Output Flows in Discrete Queuinge Systems // Autom. Remote Control. 1984. V. 45. No. 11. Part 1. P. 1413-1419.
23. Lundqvist H., Karlsson G. TCP with End-to-End FEC // Communications, 2004 Int. Zurich Seminar on. 2004. P. 152-156.