Информация о публикации

Просмотр записей
Инд. авторы: Ефремов С.А., Штырина О.В., Медведев С.Б.
Заглавие: Итерационный численный алгоритм решения краевой задачи по определению эволюции сигнала и накачки в усиливающей оптической среде
Библ. ссылка: Ефремов С.А., Штырина О.В., Медведев С.Б. Итерационный численный алгоритм решения краевой задачи по определению эволюции сигнала и накачки в усиливающей оптической среде // Вычислительные технологии. - 2017. - Т.22. - № 6. - С.23-34. - ISSN 1560-7534. - EISSN 2313-691X.
Внешние системы: РИНЦ: 32248589;
Реферат: rus: Для краевой задачи с системой балансных уравнений, описывающих энергетический баланс внутри усиливающей среды, как альтернатива методу стрельбы построен и реализован численный итерационный метод. С помощью данного алгоритма проведена оптимизация мощности выходного излучения для двух лазерных конфигураций: кольцевой и линейной. На основе разработанного численного метода построено аналитическое приближение. Показана применимость аналитического приближения для предварительной оптимизации, а также для старта численного алгоритма.
eng: A modern fiber laser is a complex system with a large number of parameters, so the computational process becomes more complex and the existing methods make it very expensive in terms of computational time and resources. The energy balance inside the laser cavity can be described by the system of balance equations. So due to the fact that the boundary conditions of the original boundary problem do not match the experimental data, there is a necessity for a formulation of the boundary-value problem for the given system of equations in accordance with available laser configuration. The main goal of the present paper is to make an attempt to simplify the original system of balance equations for developing more efficient numerical algorithm. Here both numerical and analytical methods were used. The iterative methods coupled with the finite-difference method were applied for computations. The following main results were obtained: the effective numerical iterative method was developed for two resonator types, namely, linear and circular; based on constructional features of the circular and linear resonator types the correct boundary value problem for the system of balance equations was posed for which experimental data can easily be applied; the new algorithm was tailored for the formulated boundary value problem for both resonator types. In present work it is showed that the implementation of analytical methods leads to significant simplification of computational process in some cases. While there are problems, which need to be solved as fast as it is possible, such simplification would be extremely useful.
Ключевые слова: gain; active media; fiber laser; накачка; усиление; активная среда; волоконный лазер; pump;
Издано: 2017
Физ. характеристика: с.23-34
Цитирование:
1. Siegman, A.E. Lasers. Mill Valley,California: Univ. Sci. Books, 1986. 1283 p.
2. Kurkov, A.S., Dianov, E.M. Moderate-power CW fiber lasers // Quantum Electronics. 2004. Vol. 34(10). P. 881-900.
3. Bale, B.G., Okhotnikov, O.G., Turitsyn,S.K. Modeling and technologies of ultrafast fiber lasers. Fiber lasers. Chapter 5 / Ed. O.G. Okhotnikov. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. P. 135-175. DOI: 10.1002/9783527648641.ch5.
4. Turitsyn, S.K. Theory of energy evolution in laser resonators with saturated gain and nonsaturated loss // Optics Express. 2009. Vol. 17(14). P. 11898-11904.
5. Yarutkina, I.A., Shtyrina, O.V., Skidin, A., Fedoruk, M.P. Theoretical study of energy evolution in ring cavity fiber lasers // Optics Communications. 2015. Vol. 342. P. 26-29.
6. Turitsyn, S.K., Bednyakova, A.E., Fedoruk, M.P., Latkin, A.I., Fotiadi, A.A., Kurkov, A.S., Sholokhov, E. Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics // Optics Express. 2011. Vol. 19, No. 9. P. 8394.
7. Barnard, C., Myslinski, P., Chrostowski, J., Kavehrad, M. Analytical model for rare-earth-doped fiber amplifiers and lasers // IEEE J. Quantum Electronics. 1994. Vol. 30. P. 1817-1830.
8. Pfeiffer, T., Bullow, H. Analytical gain equation for erbium-doped fiber amplifiers including mode field profiles and dopant distribution // IEEE Photon. Technology Lett. 1992. Vol. 4. P. 449-451.
9. Shtyrina, O.V., Ivanenko, A.V., Yarutkina, I. A., Kemmer, A.V., Skidin, A.S., Kobtsev, S.M., Fedoruk, M.P. Experimental measurement and analytical estimation of the signal gain in an Er-doped fiber // J. of the Optical Soc. of America B. 2017. Vol. 34, No. 2. P. 227-231.