Информация о публикации

Просмотр записей
Инд. авторы: Chirkov D.V., Cherny S.G., Shcherbakov P.K., Skorospelov V.A., Zakharov A.V.
Заглавие: Three-dimensional simulation of full load instability in Francis turbines
Библ. ссылка: Chirkov D.V., Cherny S.G., Shcherbakov P.K., Skorospelov V.A., Zakharov A.V. Three-dimensional simulation of full load instability in Francis turbines // Journal of Hydraulic Research. - 2019. - Vol.57. - Iss. 5. - P.623-634. - ISSN 0022-1686. - EISSN 1814-2079.
Внешние системы: DOI: 10.1080/00221686.2018.1494047; РИНЦ: 35758039; РИНЦ: 41613897; РИНЦ: 41791671; SCOPUS: 2-s2.0-85052337205; WoS: 000482979900002;
Реферат: eng: Full load instability is one of the most dangerous unsteady flow phenomena, and practically restricts the zone of stable operation of the whole hydraulic power plant. This paper presents a mathematical model and a numerical method for simulation of full load instability and the resulting pressure pulsations in Francis turbines. The model consists of one-dimensional hydro-acoustic equations for a long penstock domain, and three-dimensional Reynolds averaged Navier–Stokes equations of “liquid-vapour” flow for the turbine domain. Series of computations of a high head hydraulic power plant are carried out. Investigated are the sensitivities to time step and mesh size refinements as well as the effect of turbulence model. Thoma number and operating point dependencies of the computed amplitude and frequency of pressure pulsations are compared to measurements and to the predictions of the fully one-dimensional model of the power plant. The amplitude of the computed pressure and power oscillations agree well with the available experimental data, showing the potential of the presented approach to investigate and predict high load pulsations in hydraulic power plants.
Ключевые слова: NUMERICAL-SIMULATION; water pipelines; three-dimensional models; Francis turbine; flow instabilities; Cavitation; numerical simulation; FLOW;
Издано: 2019
Физ. характеристика: с.623-634
Цитирование:
1. Alligne, S., (2011). Forced and self oscillations of hydraulic systems induced by cavitation vortex rope of Francis turbines (Doctoral dissertation). EPFL, Lausanne. Retrieved from https://infoscience.epfl.ch/record/166135/files/EPFL_TH5117.pdf
2. Alligne, S., Maruzewski, P., Dinh, T., Wang, B., Fedorov, A., Iosfin, J., & Avellan, F., (2010, September). Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model. In Proceedings of 25th IAHR symposium on hydraulic machinery and systems, Timisoara, Romania.
3. Alligne, S., Nicolet, C., Ruchonnet, N., Hasmatuchi, V., Maruzewski, P., & Avellan, F., (2009, October). Numerical simulation of nonlinear self-oscillations of a full load vortex rope. In Proceedings of 3rd international meeting of the workgroup on cavitation and dynamic problems in hydraulic machinery and systems (Vol. 2, pp. 325–338). Brno, Czech Republic.
4. Alligne, S., Nicolet, C., Tsujimoto, Y., & Avellan, F., (2014). Cavitation surge modelling in Francis turbine draft tube. Journal of Hydraulic Research, 52(3), 399–411. doi: 10.1080/00221686.2013.854847
5. Avdyushenko, A. Y., Cherny, S. G., Chirkov, D. V., Skorospelov, V. A., & Turuk, P. A., (2013). Numerical simulation of transient processes in hydroturbines. Thermophysics and Aeromechanics, 20(5), 577–593. doi: 10.1134/S0869864313050059
6. Chen, C., Nicolet, C., Yonezawa, K., Farhat, M., Avellan, F., Miyagawa, K., & Tsujimoto, Y., (2010). Experimental study and numerical simulation of cavity oscillation in a conical diffuser. International Journal of Fluid Machinery and Systems, 3, 91–101. doi: 10.5293/IJFMS.2010.3.1.091
7. Chen, C., Nicolet, C., Yonezawa, K., Farhat, M., Avellan, F., & Tsujimoto, Y., (2008). One-dimensional analysis of full load draft tube surge. ASME Journal of Fluids Engineering, 130, 041106. doi: 10.1115/1.2903475
8. Chen, Y. S., & Kim, S. W., (1987). Computation of turbulent flows using an extended k-ε turbulence closure model. NASA CR-179204.
9. Cherny, S., Chirkov, D., Bannikov, D., Lapin, V., Skorospelov, V., Eshkunova, I., & Avdushenko, A., (2010, September). 3D numerical simulation of transient processes in hydraulic turbines. In Proceedings of 25th IAHR symposium on hydraulic machinery and systems, Timisoara, Romania.
10. Chirkov, D., Avdyushenko, A., Panov, L., Bannikov, D., Cherny, S., Skorospelov, V., & Pylev, I., (2012, August). CFD simulation of pressure and discharge surge in Francis turbine at off-design conditions. In Proceedings of 26th IAHR symposium on hydraulic machinery and systems, Beijing, China.
11. Chirkov, D., Panov, L., Cherny, S., & Pylev, I., (2014, September). Numerical simulation of full load surge in Francis turbines based on three-dimensional cavitating flow model. In Proceedings of 27th IAHR symposium on hydraulic machinery and systems, Montreal, Canada.
12. Dörfler, P., (2009, September). Evaluating 1D models for vortex-induced pulsation in Francis turbines. In Proceedings of 3rd international meeting of the workgroup on cavitation and dynamic problems in hydraulic machinery and systems (vol. 2, pp. 315–324). Brno, Czech Republic.
13. Dörfler, P., Sick, M., & Coutu, A., (2013). Flow-induced pulsation and vibration in hydroelectric machinery. London: Springer-Verlag.
14. Dörfler, P. K., Keller, M., & Braun, O., (2010, September). Francis full-load surge mechanism identified by unsteady 2-phase CFD. In Proceedings of 25th IAHR symposium on hydraulic machinery and systems, Timisoara, Romania.
15. Flemming, F., Foust, J., Koutnik, J., & Fisher, R. K., (2008, October). Overload surge investigation using CFD data. In Proceedings of 24th IAHR symposium on hydraulic machinery and systems, Foz do Iguassu, Brazil.
16. Jacob, T., & Prenat, J. E., (1996). Francis turbine surge: discussion and data base. In Proceedings of 18th IAHR symposium on hydraulic machinery and systems, Valencia, Spain.
17. Koutnik, J., Nicolet, C., Schohl, G. A., & Avellan, F., (2006, October). Overload surge event in a pumped storage power plant. In Proceedings of 23rd IAHR symposium on hydraulic machinery and systems, Yokohama, Japan.
18. Koutnik, J., & Pulpitel, L., (1996, September). Modeling of the Francis turbine full-load surge. In Proceedings of modeling, testing and monitoring for hydro power plants, Lausanne, Switzerland.
19. Kunz, R. F., Boger, D. A., Stinebring, D. A., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., & Govindan, T. R., (2000). A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Computers & Fluids, 29, 849–875. doi: 10.1016/S0045-7930(99)00039-0
20. Landry, C., Favrel, A., Müller, A., Nicolet, C., & Avellan, F., (2016). Local wave speed and bulk flow viscosity in Francis turbines at part load operation. Journal of Hydraulic Research, 54(2), 185–196. doi: 10.1080/00221686.2015.1131204
21. Müller, A., (2014). Physical mechanisms governing self-excited pressure oscillations in Francis turbines (Doctoral dissertation). EPFL, Lausanne. Retrieved from https://infoscience.epfl.ch/record/199130/files/EPFL_TH6206.pdf
22. Nicolet, C., (2007). Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems (Doctoral dissertation). EPFL, Lausanne. Retrieved from https://infoscience.epfl.ch/record/98534/files/EPFL_TH3751.pdf
23. Panov, L. V., Chirkov, D. V., Cherny, S. G., & Pylev, I. M., (2014). Numerical simulation of pulsation processes in hydraulic turbine based on 3D model of cavitating Flow. Thermophysics and Aeromechanics, 21(1), 31–43. doi: 10.1134/S0869864314010041
24. Panov, L. V., Chirkov, D. V., Cherny, S. G., Pylev, I. M., & Sotnikov, A. A., (2012). Numerical simulation of steady cavitating flow of viscous fluid in a Francis hydroturbine. Thermophysics and Aeromechanics, 19(3), 415–427. doi: 10.1134/S0869864312030079
25. Zobeiri, A., (2009). Investigations of time dependent flow phenomena in a turbine and a pump-turbine of francis type: rotor-stator interactions and precessing vortex rope (Doctoral dissertation). EPFL, Lausanne. Retrieved from https://infoscience.epfl.ch/record/128887/files/EPFL_TH4272.pdf
26. Zwart, P.J., Gerber, A.G., & Belamri, T.A., (2004). Two-phase flow model for predicting cavitation dynamics. In Proceedings of international conference on multiphase flow (Paper No. 152). Yokohama, Japan.