Информация о публикации

Просмотр записей
Инд. авторы: Voropaeva O.F., Tsgoev C.A.
Заглавие: A Numerical Model of Inflammation Dynamics in the Core of Myocardial Infarction
Библ. ссылка: Voropaeva O.F., Tsgoev C.A. A Numerical Model of Inflammation Dynamics in the Core of Myocardial Infarction // Journal of Applied and Industrial Mathematics. - 2019. - Vol.13. - Iss. 2. - P.372-383. - ISSN 1990-4789. - EISSN 1990-4797.
Внешние системы: DOI: 10.1134/S1990478919020182; РИНЦ: 41685847; SCOPUS: 2-s2.0-85067391350;
Реферат: eng: Mathematical simulation is carried out of the dynamics of an acute inflammatory process in the central zone of necrotic myocardial damage. Some mathematical model of the dynamics of the monocyte-macrophages and cytokines is presented and the numerical algorithm is developed for solving an inverse coefficient problem for a stiff nonlinear system of ordinary differential equations (ODEs). The methodological studies showed that the solution obtained by the genetic BGA algorithm agrees well with the solutions obtained by the gradient and ravine methods. Adequacy of the simulation results is confirmed by their qualitative and quantitative agreement with the laboratory data on the dynamics of inflammatory process in the case of infarction in the left ventricle of the heart of a mouse. © 2019, Pleiades Publishing, Ltd.
Ключевые слова: TNF-α; Nonlinear equations; Ordinary differential equations; Pathology; Cytokines; Direct and inverse problems; IL-1; IL-10; inflammation; Mathematical simulations; Myocardial Infarction; necrosis; Inverse problems; direct and inverse problems; genetic algorithm; IL-1; IL-10; inflammation; M1 and M2 macrophages; mathematical simulation; myocardial infarction; necrosis; Cardiology; Dynamics; Genetic algorithms; Macrophages; cytokine;
Издано: 2019
Физ. характеристика: с.372-383
Цитирование:
1. K. Thygesen, J. S. Alpert, and H. D. White, “Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal Definition of Myocardial Infarction,” European Heart J. 28, 2525–2538 (2007).
2. T. Baron, K. Hambraeus, J. Sundström, D. Erlinge, T. Jernberg, and B. Lindahl, “Type 2 Myocardial Infarction in Clinical Practice,” Heart 101 (2), 101–106 (2015).
3. L. M. Nepomnyashchikh, E. L. Lushnikova, and D. E. Semenov, Regenerative-Plastic Heart Failure: Morphological Basics and Molecular Mechanisms (Izd. Ross. Akad. Med. Nauk, Moscow, 2003) [in Russian].
4. S. Frantz and M. Nahrendorf, “Cardiac Macrophages and Their Role in Ischemic Heart Disease,” Cardiovascular Res. 102, 240–248 (2014).
5. A. A. Yarilin, Immunology (GEOTAR-Media, Moscow, 2010) [in Russian].
6. C. Troidl et al., “Classically and Alternatively Activated Macrophages Contribute to Tissue Remodelling after Myocardial Infarction,” J. Cell. Mol. Med. 13 (9B), 3485–3496 (2009).
7. A. Gombozhapova et al., “Macrophage Activation and Polarization in Post-Infarction Cardiac Remodeling,” J. Biomedical Sci. 24 (13), 11 (2017).
8. T. Anzai, “Post-Infarction Inflammation and Left Ventricular Remodeling,” Circulation J. 77, 580–587 (2013).
9. F. Yang et al., “Myocardial Infarction and Cardiac Remodelling in Mice,” Exp. Physiology. 87 (5), 547–555 (2002).
10. A. Saxena, W. Chen, Y. Su, V. Rai, O. U. Uche, N. Li, and N. G. Frangogiannis, “IL-1 Induces Proinflammatory Leukocyte Infiltration and Regulates Fibroblast Phenotype in the Infarcted Myocardium,” J. Immunol. 191, 4838–4848 (2013).
11. O. F. Voropaeva and Yu. I. Shokin, “Numerical Modeling in Medicine: Statements of Some Problems and Computational results,” Vychisl. Tekhnol. 17 (4), 29–55 (2012).
12. R. L. Winslow, S. Cortassa, B. O’Rourke, Y. L. Hashambhoy, J. J. Rice, and J. L. Greenstein, “Integrative Modeling of the Cardiac Ventricular Myocyte,” WIREs Syst. Biol. Med. 3, 392–413 (2011).
13. L. C. Lee, G. S. Kassab, and J. M. Guccione, “Mathematical Modeling of Cardiac Growth and Remodeling,” WIREs Syst. Biol. Med. 8, 211–226 (2016).
14. V. E. Shlyakhover, N. I. Yabluchanskii, S. V. Eremenko, and V. A. Zabolotskii, “Mathematical Model of Cardiac Wall Strength in Zone of Myocardial Infarction for Different Conditions of Cicatrization of It,” Krovoobrashchenie 21 (4), 3–6 (1988).
15. O. M. Belotserkovskii, Application of Mathematical Approaches and Computers in Medicine in Computational Mechanics. Modern Problems and Results (Nauka, Moscow, 1991), pp. 148–172.
16. O. M. Belotserkovskii, et al., “Prediction of Clinical Outcome of Myocardial Infarction,” Dokl. Akad. Nauk SSSR 261 (6), 1307–1310 (1981).
17. O. M. Belotserkovskii, et al., “Mathematical Analysis of Regularity of Clinical Course of Myocardial Infarction,” in Problems of Cybernetics. Application of Mathematical Approach and Computer Techniques in Cardiology and Surgery (VINITI, Moscow, 1983), pp. 3–15.
18. O. M. Belotserkovskii, A. V. Vinogradov, and A. S. Glazunov, “Mathematical Modeling of Myocardial Infarction Epigenetics,” in Problems of Cybernetics. Bioinformatics and Its Applications (VINITI, Moscow, 1988), pp. 3–22.
19. O. M. Belotserkovskii, A. V. Vinogradov, and A. S. Glazunov, “Method of Early Prediction of Acute Myocardial Infarction and Postinfarction Cardiosclerosis,” in Informatics and Medicine (Nauka, Moscow, 1997), pp. 72–119.
20. L. Y. D. Crapts, Modeling an Angiogenesis Treatment after a Myocardial Infarction. Master of Science Thesis. (Delft Technical Univ., Delft, 2012).
21. E. Berberoglu and S. Goktepe, “Computational Modeling of Myocardial Infarction,” Procedia IUTAM 12, 52–61 (2015).
22. J. Lin et al., “Age-Related Cardiac Muscle Sarcopenia: Combining Experimental and Mathematical Modeling to Identify Mechanisms,” Exp. Gerontol. 43, 296–306 (2008).
23. Y.-F. Jin et al., “Combining Experimental and Mathematical Modeling to Reveal Mechanisms of Macrophage-Dependent Left Ventricular Remodeling,” BMC Systems Biology 5 (60), 14 (2011).
24. Y. Wang, Y. Jin, Y. Ma, G. Halade, and M. Linsey, “Mathematical Modeling of Macrophage Activation in Left Ventricular Remodeling Post-Myocardial Infarction,” in 2011 IEEE International Workshop on Genomic Signal Processing and Statistics, December 4–6, 2011 (San Antonio, 2011), pp. 202–205.
25. Y. Wang et al., “Mathematical Modeling and Stability Analysis of Macrophage Activation in Left Ventricular Remodeling Post-Myocardial Infarction,” BMC Genomics 13 (21) 8 (2012).
26. O. F. Voropaeva, N. D. Plotnikov, and Ch. A. Tsgoev, “Numerical Simulation of Cell Death During Ischemia,” in Proceedings of International Conference “Modern Problems of Mathematics, Informatics, and Mechanics,” Voronezh, September 12–15, 2016 (Nauchno-Issledov. Publ., Voronezh, 2016), pp. 221–223.
27. N. D. Plotnikov, Ch. A. Tsgoev, and O. F. Voropaeva, “Mathematical Modeling of Cell Death Processes in a Living Organism,” in Proceedings of International Conference ‘Marchuk Scientific Readings—2017,’ Novosibirsk, June 25–July 14, 2017 (Inst. Vychisl. Mat. Mat. Geofiz., Novosibirsk, 2017), pp. 697–704.
28. I. Sallaberger et al., “The Design of Francis Turbine Runners by 3D Euler Simulations Coupled to a Breeder Genetic Algorithm,” in Proceedings of 20 IAHR Symposium on Hydraulic Machinery and Systems, August 6–9, Charlotte, 2000 (2000), p. 10.
29. S. G. Cherny, D. V. Chirkov, V. N. Lapin, V. A. Skorospelov, and S. V. Sharov, Numerical Modeling of Flows in Turbomachines (Nauka, Novosibirsk, 2006) [in Russian].
30. Yu. I. Neimark, Mathematical Modeling as Science and as Art (Izd. Nizhegorod. Gos. Univ., Nizhni Novgorod, 2010) [in Russian].
31. E. Oran and J. Boris, Numerical Modeling of Reacting Flows (Mir, Moscow, 1990) [in Russian].
32. L. Lyung, System Identification. The Theory for a User (Nauka, Moscow, 1991) [in Russian].
33. H. Miao, X. Xia, A.-S. Perelson, and H. Wu, “On Identifiability of Nonlinear ODE models and Applications in Viral Dynamics,” SIAM Rev. Soc. Ind. Appl. Math. 53 (1), 3–39 (2011).
34. S. I. Kabanikhin, D. A. Voronov, A. A. Grozd’, and O.I. Krivirot’ko, “Possibility of Identification of Mathematical Models of Medical Biology,” Vavilov. Zh. Genetiki i Selektsii 19 (6), 738–744 (2015).
35. S. I. Kabanikhin, A. I. Il’in, and O. I. Krivirot’ko, “On Parameter Definition of the Models Describing by Systems of Nonlinear Differential Equations,” Sibir. Elektr. Mat. Izv. 11, 62–76 (2014).
36. I. M. Gel’fand and M. L. Tsetlin, “On Some Methods of Control for Complex Systems,” Uspekhi Mat. Nauk 17 (1), 3–25 (1962).