Информация о публикации

Просмотр записей
Инд. авторы: Ковеня В.М., Бабинцев П.В.
Заглавие: Алгоритмы расщепления в методе конечных объемов
Библ. ссылка: Ковеня В.М., Бабинцев П.В. Алгоритмы расщепления в методе конечных объемов // Вычислительные технологии. - 2015. - Т.20. - № 5. - С.65-84. - ISSN 1560-7534. - EISSN 2313-691X.
Внешние системы: РИНЦ: 24498150;
Реферат: rus: Для численного решения уравнений Эйлера и Навье - Стокса сжимаемого теплопроводного газа, записанных в интегральной форме, предложен класс конечно-объемных алгоритмов типа предиктор-корректор. На этапе предиктор введены специальные формы расщепления уравнений, что позволило свести решение сеточных уравнений на дробных шагах к эффективным скалярным прогонкам. Проведены тестовые расчеты течений. Исследованы течения газа в сужающемся канале при возникновении регулярного и нерегулярного отражения, численно подтвержден эффект существования области двойного решения в зависимости от начальных данных.
Ключевые слова: уравнения Эйлера и Навье - Стокса; метод расщепления; метод конечных объемов; регулярное и маховское отражение волн;
Издано: 2015
Физ. характеристика: с.65-84
Цитирование:
1. Yanenko, N.N. The method of fractional steps the solution of problems of mathematical physics in several variables. Berlin: Springer-Verlag; 1971: 158.
2. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Y., Krayko, A.N., Prokopov, G.P. Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki [Numerical solution of multi-dimensional problems in gas dynamics]. Moscow: Nauka; 1976: 400. (In Russ.)
3. Fletcher, C.A.J. Computational techniques for fluid dynamics. Berlin: Springer-Verlag; 1988: 409.
4. Kulikovskiy, A.G., Pogorelov, N.V., Semenov, A.Y. Matematicheskie voprosy chis-lennogo resheniya giperbolicheskikh sistem uravneniy [Mathematical problems in the numerical solution of hyperbolic systems]. Moscow: Fizmatlit; 2001: 608. (In Russ.)
5. Yamomoto, S., Daiguji, H. Higher-order accurate upwind schemes for solving the compressible Euler and Navier - Stokes equations. Computer and Fluids. 1993; (22):259-270.
6. Vos, J.B., Rizzi, A., Darrac, D., Hirschel, E.H. Navier - Stokes solvers in European aircraft design. Progress in Aerospace Sciences. 2002; (38):601-697.
7. Kovenya, V.M., Yanenko, N.N. Metod rasshchepleniya v zadachakh gazovoy dinamiki [The splitting method in problems of gas dynamics]. Novosibirsk: Nauka. Sibirskoe otdelenie; 1981: 304. (In Russ.)
8. Kovenya, V.M. Algoritmy rasshchepleniya pri reshenii mnogomernykh zadach aerogidrodi-namiki [Splitting algorithms for solving multidimensional problems of aerodynamics]. Novosibirsk: Izdatel'stvo SO RAN; 2014: 280. (In Russ.)
9. Le Veque, R.J. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press; 2002: 580.
10. Meister, А., Sonar, Th. Finite-volume schemes for compressible fluid flow. Surveys on Mathematics for Industry. 1998; (8):1-36.
11. Toro E.F. Riemann solvers and numerical methods for fluid dynamics. A practical introduction. 2 nd Edition. Berlin: Springer - Verlag; 2009: 724.
12. Morton, K.W., Sonar, Th. Finite volume methods for hyperbolic conservation laws. Acta Numerica. 2007; (16):155-238.
13. Titarev, V.A., Toro, E.F. ADER: Arbitrary high order Godunov approach. Journal Scientic Computing 2002; 17(4):609-618.
14. Remaki, L., Hassan, O., Morgan, K. Aerodynamic computations using a finite volume method with an HLLC numerical flux function. Mathematical Modelling of Natural Phenomena. 2010; 10(5):1-20.
15. Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A. Implicit time integration schemes for the unsteady compressible Navier - Stokes equations: Laminar flow. Journal of Computational Physics. 2002; (179):313-329.
16. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S. Optimal implicit strong stability preserving Runge - Kutta methods. Applied Numerical Mathematics. 2009; (59):373-392.
17. Chirkov, D.V., Cherny, S.G. Implicit method of numerical modeling of spatial fluids of viscous gas. Computational Technologies. 2003; 8(1):66-83. (In Russ.)
18. Cherny, S.G., Chirkov, D.V., Lapin, V.N., Skorospelov, V.A., Sharov, S.V. Chislennoe modelirovanie techeniy v turbomashinakh [Numerical simulation of flows in turbomachinery]. Novosibirsk: Nauka; 2006: 202. (In Russ.)
19. Loitsyanskiy, L.G. Mekhanika zhidkosti i gaza [Fluid Mechanics]. Moscow: Nauka; 1978: 736.(In Russ.)
20. Kovenya, V.M., Slyunyaev, A.Y. Splitting algorithms for solving Navier - Stokes Equations. Computational Mathematic and Mathematical Physics. 2009; 49(4):700-714. (In Russ.)
21. Lebedev, A.S., Chernyy, S.G. Praktikum po chislennomu resheniyu uravneniy v chastnykh proizvodnykh: Uchebnoe posobie. [Workshop on the numerical solution of partial differential equations: Tutorial]. Novosibirsk: NGU; 2000: 136. (In Russ.)
22. Ivanov, M.S., Bendor, G., Elperin, T., Kudryavtsev, A.N., Khotyanovsky, D.V. Flow-Mach-number-variation induced hysteresis in steady flow shock wave reflections. American Institute of Aeronautics and Astronautics Journal. 2001; 39(5):972-974.
23. Ivanov, M.S., Vandromme, D., Fomin, V.M., Kudryavtsev, A.N., Hadjadj, A., Khotyanovsky, D.V. Transition between regular and Mach reflection of shock waves: new numerical and experimental results. Shock Waves. 2001; 11(3):197-207.
24. Von Neumann, J. Oblique reflection of shock waves. Collected Works. Oxford: Pergamon Press. 1963; (6):238-299.