Информация о публикации

Просмотр записей
Инд. авторы: Sidelnikov O.S, Sygletos S., Ferreira F., Fedoruk M.P.
Заглавие: Numerical modelling of multimode fibre-optic communication lines
Библ. ссылка: Sidelnikov O.S, Sygletos S., Ferreira F., Fedoruk M.P. Numerical modelling of multimode fibre-optic communication lines // Quantum Electronics. - 2016. - Vol.46. - Iss. 1. - P.76-80. - ISSN 1063-7818. - EISSN 1468-4799.
Внешние системы: DOI: 10.1070/QE2016v046n01ABEH015841; РИНЦ: 26878819; SCOPUS: 2-s2.0-84956622234; WoS: 000369169200015;
Реферат: eng: The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. © 2016 Kvantovaya Elektronika and Turpion Ltd.
Ключевые слова: Strong-coupling regime; Group delay; Differential group delay; Manakov equation; Mathematical modelling; Multimode fibre; Digital communication systems; Error compensation; Fibers; Mathematical models; Multimode fibers; Numerical models; Differential group delay; Error vector magnitude; Fibre-optic communication lines; Manakov equations; Nonlinear propagation; Numerical implementation; Optical signals;
Издано: 2016
Физ. характеристика: с.76-80
Цитирование:
1. Qian D. In: Proc. OFC/NFOEC2011 (Los Angeles, 2011) PDPB5.
2. Zhou X. In: Proc. OFC/NFOEC2013 (Anaheim, 2013) OTu2B.4.
3. Yushko O.V., Nanii O.E., Redyuk A.A., et al. Kvantovaya Elektron., 45 (1), 75 (2015)
4. [Quantum Electron., 45 (1), 75 (2015)].
5. Redyuk A.A. et al. Laser Phys. Lett., 12, 1 (2015).
6. Ryf R., Randel S., Gnauck A.H., et al. In: Proc. OFC/NFOEC 2011 (Los Angeles, 2011)PDPB10.
7. Ip E. et al. In: Proc. ECOC 2011 (Geneva, 2011) Th.13.C2.
8. Zhu B. Opt. Express, 19, 17 (2011).
9. Sakaguchi J. et al. J. Lightwave Technol., 31, 4 (2013).
10. Takara H. et al. In: Proc. ECOC2012 (Amsterdam, 2012) Th.3.C.1.
11. Appaiah K. et al. In: Proc. ICC2012 (Ottawa, 2012) p. 2972.
12. Liu J. et al. Opt. Express, 22, 6 (2014).
13. Leunga A. et al. Sens. Actuators B: Chem., 125, 2 (2007).
14. Islam M. et al. Sensors, 14, 4 (2014).
15. Carpenter J. Opt. Express, 22, 3 (2014).
16. Inan B. et al. In: Proc. OFC/NFOEC2012 (Los Angeles, 2012) OW3D.4.
17. Gruner-Nielsen L. et al. In: Proc. OFC/NFOEC2012 (Los Angeles, 2012) PDP5A.1.
18. Ryf R. et al. In: Proc. ECOC2011 (Geneva, 2011) Th.13.C.1.
19. Mumtaz S. et al. J. Lightwave Technol., 31, 3 (2013).
20. Mecozzi A. et al. Opt. Express, 20, 11 (2012).
21. Ferreira F.M. et al. J. Lightwave Technol., 32, 3 (2014).
22. Essiambre R.J. et al. J. Lightwave Technol., 28, 4 (2010).