Информация о публикации

Просмотр записей
Инд. авторы: Chekhovskoy I.S., Paasonen V.I., Shtyrina O.V., Fedoruk M.P.
Заглавие: Numerical approaches to simulation of multi-core fibers
Библ. ссылка: Chekhovskoy I.S., Paasonen V.I., Shtyrina O.V., Fedoruk M.P. Numerical approaches to simulation of multi-core fibers // Journal of Computational Physics. - 2017. - Vol.334. - P.31-44. - ISSN 0021-9991. - EISSN 1090-2716.
Внешние системы: DOI: 10.1016/j.jcp.2016.12.056; РИНЦ: 29472857; SCOPUS: 2-s2.0-85008881255; WoS: 000395210500003;
Реферат: eng: We propose generalizations of two numerical algorithms to solve the system of linearly coupled nonlinear Schrödinger equations (NLSEs) describing the propagation of light pulses in multi-core optical fibers. An iterative compact dissipative second-order accurate in space and fourth-order accurate in time scheme is the first numerical method. This compact scheme has strong stability due to inclusion of the additional dissipative term. The second algorithm is a generalization of the split-step Fourier method based on Padé approximation of the matrix exponential. We compare a computational efficiency of both algorithms and show that the compact scheme is more efficient in terms of performance for solving a large system of coupled NLSEs. We also present the parallel implementation of the numerical algorithms for shared memory systems using OpenMP. © 2016 Elsevier Inc.
Ключевые слова: Nonlinear Schrödinger equation; Multi-core fibers; Nonlinear fiber optics; Split-step Fourier method; Compact finite-difference scheme; Padé approximant;
Издано: 2017
Физ. характеристика: с.31-44
Цитирование:
1. [1] Kivshar, Y.S., Agrawal, G.P., Optical Solitons: From Fibers to Photonic Crystals. 5th edition, 2003, Academic, New York.
2. [2] Agrawal, G., Applications of Nonlinear Fiber Optics. 2010, Elsevier Science http://books.google.ru/books?id=1HZ6ROsqz2gC.
3. [3] Richardson, D.J., Fini, J.M., Nelson, L.E., Space-division multiplexing in optical fibres. Nat. Photonics 7:5 (2013), 354–362, 10.1038/nphoton.2013.94.
4. [4] Mumtaz, S., Essiambre, R., Agrawal, G., Reduction of nonlinear penalties due to linear coupling in multicore optical fibers. IEEE Photonics Technol. Lett. 24:18 (2012), 1574–1576, 10.1109/LPT.2012.2207713 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6253229.
5. [5] Wang, T., Maximum norm error bound of a linearized difference scheme for a coupled nonlinear Schrödinger equations. J. Comput. Appl. Math. 235:14 (2011), 4237–4250, 10.1016/j.cam.2011.03.019 http://www.sciencedirect.com/science/article/pii/S037704271100149X.
6. [6] Wang, D., Xiao, A., Yang, W., A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272 (2014), 644–655, 10.1016/j.jcp.2014.04.047 http://www.sciencedirect.com/science/article/pii/S0021999114003167.
7. [7] Dehghan, M., Taleei, A., A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations. Comput. Phys. Commun. 182:12 (2011), 2519–2529, 10.1016/j.cpc.2011.07.009 http://www.sciencedirect.com/science/article/pii/S0010465511002475.
8. [8] Dehghan, M., Abbaszadeh, M., Mohebbi, A., Numerical solution of system of n-coupled nonlinear Schrödinger equations via two variants of the meshless local Petrov–Galerkin (MLPG) method. Comput. Model. Eng. Sci. 100:5 (2014), 399–444 http://www.techscience.com/cmes/2014/v100n5_index.html.
9. [9] Chen, Y., Zhu, H., Song, S., Multi-symplectic splitting method for the coupled nonlinear Schrödinger equation. Comput. Phys. Commun. 181:7 (2010), 1231–1241, 10.1016/j.cpc.2010.03.009 http://www.sciencedirect.com/science/article/pii/S0010465510000895.
10. [10] Ma, Y., Kong, L., Hong, J., Cao, Y., High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations. Comput. Math. Appl. 61:2 (2011), 319–333, 10.1016/j.camwa.2010.11.007 http://www.sciencedirect.com/science/article/pii/S0898122110008564.
11. [11] Taha, T.R., Xu, X., Parallel split-step Fourier methods for the coupled nonlinear Schrödinger type equations. J. Supercomput. 32:1 (2005), 5–23, 10.1007/s11227-005-0183-5.
12. [12] Wang, S., Wang, T., Zhang, L., Numerical computations for N-coupled nonlinear Schrödinger equations by split step spectral methods. Appl. Math. Comput. 222 (2013), 438–452, 10.1016/j.amc.2013.07.060 http://www.sciencedirect.com/science/article/pii/S0096300313008102.
13. [13] Taha, T.R., Ablowitz, M.I., Analytical and numerical aspects of certain nonlinear evolution equations, II: numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55:2 (1984), 203–230, 10.1016/0021-9991(84)90003-2 http://www.sciencedirect.com/science/article/pii/0021999184900032.
14. [14] Paasonen, V., Fedoruk, M., A compact dissipative scheme for nonlinear Schrödinger equation. Comput. Technol. 16:6 (2011), 68–73 (in Russian) http://www.ict.nsc.ru/jct/annotation/1464?l=eng.
15. [15] Turitsyn, S.K., Bale, B.G., Fedoruk, M.P., Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521:4 (2012), 135–203, 10.1016/j.physrep.2012.09.004 http://www.sciencedirect.com/science/article/pii/S0370157312002657.
16. [16] Kunimasa, S., Shoichiro, M., Multicore fibers for large capacity transmission. Nanophotonics 2 (2013), 441–454 http://www.degruyter.com/view/j/nanoph.2013.2.issue-5-6/nanoph-2013-0037/nanoph-2013-0037.xml.
17. [17] Mikeladze, S., On the numerical integration of elliptic and parabolic type equations. Izv. Akad. Nauk SSSR, Ser. Mat. 5:1 (1941), 57–74 (in Russian).
18. [18] Sherman, J., Morrison, W.J., Adjustment of an inverse matrix corresponding to changes in a given column or a given row of the original matrix. Ann. Math. Stat. 20:4 (1949), 621–622.
19. [19] Skiba, Y.N., A non-iterative implicit algorithm for the solution of advection–diffusion equation on a sphere. Int. J. Numer. Methods Fluids 78:5 (2015), 257–282, 10.1002/fld.4016.
20. [20] Agrawal, G., Nonlinear Fiber Optics. 4th edition, 2013, Academic Press, Boston.
21. [21] Chekhovskoy, I.S., Using Pade approximation for solving systems of nonlinear Schrodinger equations by the split-step Fourier method. Comput. Technol. 20:3 (2015), 99–108 (in Russian) http://www.ict.nsc.ru/jct/annotation/1677?l=eng.
22. [22] Mumtaz, S., Essiambre, R., Agrawal, G., Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations. J. Lightwave Technol. 31:3 (2013), 398–406, 10.1109/JLT.2012.2231401.
23. [23] Bogomolov, Y.L., Yunakovsky, A.D., Split-step Fourier method for nonlinear Schrodinger equation. DAYS on DIFFRACTION 2006, 2006, Institute of Electrical & Electronics Engineers (IEEE), 34–42, 10.1109/DD.2006.348170.
24. [24] Moler, C., Loan, C.V., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45:1 (2003), 3–49, 10.1137/S00361445024180.
25. [25] Higham, N., The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26:4 (2005), 1179–1193, 10.1137/04061101X http://eprints.ma.man.ac.uk/634/01/covered/MIMS_ep2006_394.pdf.
26. [26] Varga, R.S., Matrix Iterative Analysis. 2nd edition, 2000, Springer, Berlin Heidelberg, 10.1007/978-3-642-05156-2.
27. [27] Kuznetsov, E., Solitons in a parametrically unstable plasma. Sov. Phys. Dokl. 22 (1977), 507–508.
28. [28] Rubenchik, A.M., Chekhovskoy, I.S., Fedoruk, M.P., Shtyrina, O.V., Turitsyn, S.K., Nonlinear pulse combining and pulse compression in multi-core fibers. Opt. Lett. 40:5 (2015), 721–724, 10.1364/OL.40.000721 http://ol.osa.org/abstract.cfm?URI=ol-40-5-721.
29. [29] Kibler, B., Fatome, J., Finot, C., Millot, G., Genty, G., Wetzel, B., Akhmediev, N., Dias, F., Dudley, J.M., Observation of Kuznetsov–Ma soliton dynamics in optical fibre. Sci. Rep., 2, 2012, 463, 10.1038/srep00463.
30. [30] Petrov, V., MKL FFT Performance – Comparison of Local and Distributed-Memory Implementations. Intel Report https://software.intel.com/en-us/articles/mkl-fft-performance-using-local-and-distributed-implementation, August 2012.
31. [31] Fan, T., Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quantum Electron. 11:3 (2005), 567–577, 10.1109/JSTQE.2005.850241.
32. [32] Turitsyn, S.K., Rubenchik, A.M., Fedoruk, M.P., Tkachenko, E., Coherent propagation and energy transfer in low-dimension nonlinear arrays. Phys. Rev. A, 86, 2012, 031804, 10.1103/PhysRevA.86.031804.
33. [33] Rubenchik, A.M., Tkachenko, E.V., Fedoruk, M.P., Turitsyn, S.K., Power-controlled phase-matching and instability of CW propagation in multicore optical fibers with a central core. Opt. Lett. 38:20 (2013), 4232–4235, 10.1364/OL.38.004232 http://ol.osa.org/abstract.cfm?URI=ol-38-20-4232.
34. [34] Aceves, A.B., Shtyrina, O.V., Rubenchik, A.M., Fedoruk, M.P., Turitsyn, S.K., Spatiotemporal optical bullets in two-dimensional fiber arrays and their stability. Phys. Rev. A, 91, 2015, 033810, 10.1103/PhysRevA.91.033810 http://link.aps.org/doi/10.1103/PhysRevA.91.033810.