Информация о публикации

Просмотр записей
Инд. авторы: Oparin V.N., Kiryaeva T.A., Potapov V.P.
Заглавие: Methods and Models for Analyzing Methane Sorption Capacity of Coal Based on Its Physicochemical Characteristics
Библ. ссылка: Oparin V.N., Kiryaeva T.A., Potapov V.P. Methods and Models for Analyzing Methane Sorption Capacity of Coal Based on Its Physicochemical Characteristics // Journal of Mining Science. - 2018. - Vol.53. - Iss. 4. - P.614-629. - ISSN 1062-7391. - EISSN 1573-8736.
Внешние системы: DOI: 10.1134/S1062739117042608; РИНЦ: 35544271; SCOPUS: 2-s2.0-85045691871; WoS: 000430172300002;
Реферат: eng: The authors study the influence of physicochemical parameters on methane adsorption capacity of coal and offer the analytical method for the methane adsorption capacity for three-phased condition of methane. It is found that in the depth interval to 300 m below surface, methane adsorption capacity measured in lab can exceed natural gas content of coal obtained from geological exploration data by 30%, and the change in the thermodynamic condition of coal-methane system brings irreversible physicochemical consequences in terms of the altered ratios of physical states of the main components. There is no linear connection between natural gas content of a coal bed and its methane adsorption capacity with respect to occurrence depth. The application of Big Data in treatment and interpretation of large data flows is described. The theoretical data predicted using the proposed method and the experimental data on methane content of Kuzbass coal agree.
Ключевые слова: moisture content; porosity; volatile yield; petrography; geomechanical and geodynamic data-flow computing; Langmuir isotherm; flat data files; methane content; adsorption; Coalbed methane;
Издано: 2018
Физ. характеристика: с.614-629
1. Polevshchikov, G.Ya., Dinamicheskie gazoproyavleniya pri provedenii podgotovitel’nykh i vskryvayushchikh vyrabotok v ugol’nykh shakhtakh (Dynamic Gas Events in Driving Access and Development Roadways), Kemerovo: IUUKh SO RAN, 2003.
2. Rukovodstvo po degazatsii ugol’nykh shakht (Instructions on Gas Drainage in Coal Mines), Moscow: Nedra, 1990.
3. Rukovodstvo po proektirvaniyu ventilyatsii ugol’nykh shakht (Instructions on Coal Mine Ventilation Planning and Desing), Makeevka-Donbass: MakNII, 1989.
4. Kiryaeva, T.A., Method to Determine Gas-Dynamic Activity of Coal Beds by Exploration Data in Terms of Kuzbass, Cand. Tech. Sci. Dissertation, Kemerovo, 2005.
5. Ettinger, I.L. and Shul’man, N.V., Raspredelenie metana v porakh iskopaemykh uglei (Methane Distribution in Pores in Coal), Moscow: Nauka, 1975.
6. Polevshchikov, G.Ya. and Kiryaeva, T.A. Gas-Dynamic Stability of Coal-Methane Substance, GIAB, Special Issue 7, Kuzbass 1, 2009, pp. 146-149.
7. Kiryaeva, T.A., Natural and Technology-Related Risks in Coal Mines, Improvement of Regional Emergency Control, Prevention and Damping and Issues of Safe Life Activity: Int. Conf. Proc., Novosibirsk: SGGA, 2013, pp. 81-83.
8. Kiryaeva, T.A., Developing Model Representation of Genesis of Hydrocarbon Accumulation in Coal-Bearing Strata and Induced Gas Flow Dynamics, Estestv. Tekhnich. Nauki, 2011, no. 6, pp. 178-183.
9. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Shutilov, R.A., Kovchavtsev, A.P., Tanaino, A.S., Efimov, V.P., Astrakhantsev, I.E., and Grenev, I.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191-214.
10. Coppens, L., Annales des Mines de Belgique, 1934, vol. 35, no. 1, pp. 20-31.
11. Dokukin, A.V., Chirkov, S.E., and Norel’, B.K., Physical Framework for Mathematical Modeling of Coal Bed Filled with Gas, Nacu. Soobshch. IGD Skochin., 1979, issue 172, pp. 3-11.
12. Ettinger, I.L., Svoistva uglei, vliyayushchie na bezopasnost’ truda d shakhtakh (oal properties Affecting Mine Working Environment), Moscow: Gosgortekhizdat, 1960.
13. Ettinger, I.L., Swelling Stress in the Gas-Coal System as an Energy Source in the development of Gas Bursts, J. Min. Sci., 1979, vol. 15, no. 5, pp. 494-501.
14. Katalog metanoemkosti uglei Kuzbassa (Catalog of Kuzbass Coal Methane Content), Kemerovo: VostNII, 1969.
15. Khodot, V.V., Yanovskaya, M.F., Premysler, Yu.S., et al., Fiziko-khimiya gazodiinamicheskikh yavlenii v shakhtakh (Physics and Chemistry of Gas-Dynamic Events in Mines), Moscow: Nauka, 1973.
16. Khodot, V.V., Effect of Humidity on Coal Methane Content, Izv. AN SSSR, OTN, 1952, no.12.
17. Van Krevelen, D.W. and Schuyler, J., Coal Science: Aspects of Coal Constitution, Elsevier Publishing Company, 1957.
18. Kiselev, A.V. and Yashin, Ya.I., Gazoadsorbtsionnaya khromatografiya (Gas Adsorption Chromatography), Moscow: Nauka, 1967.
19. Khodot, V.V., Yanovskaya, M.F., and Peremysler, Yu.S., Gas Emission from Coal during Fracturing, J. Min. Sci., 1966, vol. 2, no. 6, pp. 551-557.
20. Gunter, J. Etude de la liaison gas-charbon, Rev. Industrie Miverale, 1965, vol. 47, no. 10, pp. 693-708.
21. Kiryaeva, T.A., Influence of Humidification Regime on Gas Emission from Coal and Coal and Gas Outburst Prevention, Estestv. Tekhnich. Nauki, 2012, no. 3, pp. 481-485.
22. Oparin, V.N., Theoretical Fundamentals to Describe Interaction of Geomechanical and Physicochemical Processes in Coal Seams, J. Min. Sci., 2017, vol. 53, no. 2, pp. 201-215.
23. Zhou, A.T., Wang, K., Kiryaeva, T.A., and Oparin, V.N., Regularities of Two-Phase Gas Flow under Coal and Gas Outbursts in Mines, J. Min. Sci., 2017, vol. 53, no. 3, pp. 533-543.
24. Kiryaeva, T.A., Features of Stable States of Natural and Man-Made Coal-and-Methane Systems, Estestv. Tekhnich. Nauki, 2011, no. 4, pp. 309-318.
25. Kiryaeva, T.A., Plaksin, M.S., and Ryabtsev, A.A., The Local Forecast for the Gasdynamic Activity of a Coal Layer Based on the Geological Data, GIAB, 2011, no. 8, pp. 66-69.
26. Artser, A.S. and Protasov, S.I., Ugli Kuzbassa: proiskhozhdenie, kachestvo, ispol’zovanie (Kuzbass Coal: Genesis, Quality, Use), Book 1, Kemerovo: KuzGTU, 1999.
27. Bychkov, I.V., Vladimirov, D.Ya., Oparin, V.N., Potapov, V.P., and Shokin, Yu.I., Mining Information Science and Big Data Concept for Intergated Safety Monitoring in Subsoil Management, J. Min. Sci., 2016, vol. 52, no. 6, pp. 1195-1209.
28. Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T., Fundamental’no-prikladnye metody resheniya problemy ugol’nykh plastiv (Basic and Applied Approaches to Coal Bed Issues), Moscow: IAGN, 2000.
29. Mohammed J. Zaki and Vagner Meira Jr., Data Mining and Analysis. Fundamental Concepts and Algorithm, Cambridge University Press, N.Y., 2014.
30. Self Organizing Map Applications and Novell Algorithm Design, Josohat Igadwa Mwasiag (ERd.), INTECHWEB.ORG, Printed in India, 2011.
31. Potapov, V.P., Matematicheskoe i informatsionnoe modelirovanie geosistem ugol’nykh predpriyatii (Mathematical and Information Modeling of Geosystems in Coal Mines), Kemerovo: Inst. Uglya Uglekhim. SO RAN, 1999.
32. Philipp K. Janert, Data Analysis with Open Source Tools, Reilly Media Inc., Beijing. Cambridge, Tokyo, 2011.
33. Oded Maimon and Lior Rokach, Data Mining and Knowledge Discovery Handbook, Springer, N.Y., Heidelberg, London, 2010.
34. Alekseev, A.D., Airuni, A.T., Zverev, I.V., et al, Capacity of a Coal Organic Substance to Generate Metastable Single-Phase Systems with Gas by the Type of Solid Solutions, Scientific Discovery Diploma 9, AEN, 1994.
35. Kiryaeva, T.A., Determining Resudial Coalbed Methane Content and Its Link with Solute Methane in Coal, Subsoil Use. Mining. Areas and Technologies of Mineral Prospecting, Exploration and Mining. Geoecology: Int. Conf. Proc., Novosibirsk: SGUGiG, 2016, vol. 3, pp. 108-113.