Информация о публикации

Просмотр записей
Инд. авторы: Ivanov V.Y., Barnyakov A., Barnyakov M.
Заглавие: Calibration procedure in microchannel amplifiers design
Библ. ссылка: Ivanov V.Y., Barnyakov A., Barnyakov M. Calibration procedure in microchannel amplifiers design // Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - 2018. - Vol.903. - P.170-174. - ISSN 0168-9002.
Внешние системы: DOI: 10.1016/j.nima.2018.05.046; РИНЦ: 35768033; SCOPUS: 2-s2.0-85049738397; WoS: 000444422200023;
Реферат: eng: The main parameters of microchannel amplifiers – angular and energy distributions of photo- and secondary-electron emission – are determined by the emission properties of materials. These parameters depend on the type of materials, the thickness of deposited films and the technology of processing their surfaces. Data on the emission properties of materials can be obtained by means of experimental measurements or by calculation methods using molecular dynamics. In both cases, this is associated with significant resource costs. In the cases where some of these characteristics of the materials are unknown, a calibration procedure can be recommended to determine them. Details of this procedure are described in this paper. Comparison of numerical and experimental data for specific devices is performed. © 2018 Elsevier B.V.
Ключевые слова: Numerical simulation; Photo detector; Calibration; Computer simulation; Microchannels; Molecular dynamics; Secondary emission; Angular and energy distributions; Deposited films; Emission properties; Main parameters; Micro channel plate; Resource costs; Secondary electron emissions; Materials properties; Films; Calibration procedure; Microchannel plate;
Издано: 2018
Физ. характеристика: с.170-174
1. Ivanov, V., Computational Methods, Optimization and Synthesis in Electron Optics. 2016, Hmbg: Palmarium Academic Publishing, 525.
2. Lin, Y., Joy, D.C., A new examination of secondary electron yield data. Surf. Interface Anal., 37, 2005, 895900.
3. Joy, D.C., A model for calculating secondary and backscattering electron yields. J. Micros., 147, 1987, 5164.
4. Kanaya, K., Ono, S., Ishigaki, F., Secondary electron emission from insulators. J. Phys. D 11 (1978), 2425–2437.
5. Seiler, H., Secondary electron emission in the scanning electron microscope. J. Appl. Phys. 54 (1983), R1–R18.
6. Young, J.R., Penetration of electrons in Al2O3-films. Phys. Rev. 103 (1956), 292–293.
7. Lane, R.O., Zaffarano, D.I., Transmission of 0-40 keV electrons by thin films with application to beta-ray spectroscopy. Phys. Rev. 94 (1954), 960–964.
8. Ohya, K., Mori, I., Influence of backscattered particles on angular dependence of secondary electron emission from Copper. J. Phys. Soc. Japan 59 (1990), 1506–1517.
9. V. Baglin, J. Bojko, O. Grbner, B. Henrist, N. Hilleret, C. Scheuerlein, M. Taborelli, The secondary electron yield of technical materials and its variation with surface treatments, in: Proc. of EPAC 2000, Vienna, Austria, pp. 217–221.
10. Reimer, L., Stelter, D., FORTRAN 77 Monte-Carlo program for minicomputers using Mott cross-section. Scanning 8 (1986), 265–277.
11. Ishimura, S., Aramata, M., Shimizu, R., Monte-Carlo calculation approach to quantitative Auger electron spectroscopy. J. Appl. Phys. 51 (1980), 2853–2860.
12. Joy, D.C., Monte Carlo Modeling for Electron Microscopy and Microanalysis. 1995, Oxford Univ Press.
13. Kawata, J., Ohya, K., Nishimura, K., Simulation of secondary electron emission from rough surfaces. J. Nucl. Mater. 220-222 (1995), 997–1000.
14. Furman, M.A., Pivi, M.T.F., Probabilistic model for the simulation of secondary electron emission. Phys. Rev. ST AB, 5, 2002, 124404.
15. Hovington, P., et al. CASINO: A new Monte Carlo code in c Language for electron beam interaction. Scanning 19 (1997), 1–14.
16. Barat, C., Coutelier, J., Secondary electron yield in the bendix channel electron multipler. NIM A 140 (1977), 87–92.
17. Gornyi, N.B., Secondary electron emission for different faces of Zn single crystal with crystalline zinc oxide films. JETP 26 (1954), 88–97 in Russian.
18. Guest, A.J., A computer model of channel multiplier plate performance. Acta Electron. 14 (1971), 79–97.
19. Lye, R.G., Dekker, A.J., Theory of secondary emission. Phys. Rev. 107 (1957), 977–981.
20. Agarwal, B.K., Variation of secondary emission with primary electron energy. Proc. Phys. Soc. 71 (1958), 851–852.
21. Ito, M., Kume, H., Oba, K., Computer analysis of the timing properties in micro channel plate photomultiplier tubes. IEEE Trans. NS-31 (1984), 408–412.
22. Rodney, J., Vaughan, M., A new formula for secondary emission yield. IEEE Trans. Electron Devices 36:9 (1989), 1963–1967.
23. Ivanov, V., et al. Numerical simulations of fast photo detectors based on microchannel plates. JINST, 12, 2017, P09024.
24. Ivanov, V., Insepov, Z., Antipov, S., Simulation of gain and timing resolution in saturated pores. NIM A 639 (2011), 158–161.
25. V. Ivanov, Computational models for MCP simulations, in: San Francisco, X Int. Computational Accelerator Physics Conf., ICAP’09, 2009.
26. Insepov, Z., Ivanov, V., Frisch, H., Comparison of candidate secondary electron emission materials. NIM B 268 (2010), 3315–3320.
27. Insepov, Z., Ivanov, V., Jokela, S.J., Veryovkin, I., Zinovev, A., Frisch, H., Comparison of secondary electron emission simulation to experiment. NIM A 639 (2011), 155–157.
28. Z. Insepov, V. Ivanov, J. Elam, B. Adams, H. Frisch, Charge relaxation and gain depletion for candidate secondary electron emission materials, in: Nuclear Science Symposium, Knoxville, Tennessee, 2010.
29. Z. Insepov, V. Ivanov, S. Jokela, M. Wetstein, Comparison of back-scattering properties of electron emission materials, PAC’11, New York, USA, 2011.
30. M. Wetstein, B. Adams, M. Chollet, V. Ivanov, Z. Insepov, S. Jokela, Integration-level testing of sub-nanosecond microchannel plate detector for use in time-of-flight HEP applications, in: 2nd Int. Conf. on Technology and Instrumentation in Particle Physics, Chicago, IL, USA, 2011.
31. V. Ivanov, B. Adams, Z. Insepov, V. Ivanov, J. Norem, Simulations of fast X-ray detectors based on multichannel plates, in: IPAC’12, 2012.
32. Akatsu, M., et al. MCP-PMT timing properties for single photons. NIM A 528 (2004), 763–775.
33. Barnyakov, A., et al. Photomultiplier tubes with three MCPs. NIM A 598 (2009), 160–162.
34. Barnyakov, A., et al. Test of microchannel plates in magnetic fields up to 4.5 T. NIM A 845 (2017), 588–590.
35. Barnyakov, A., et al. Microchannel plates phototubes in high magnetic field. JINST, 12, 2017, C09013.