Информация о публикации

Просмотр записей
Инд. авторы: Kovenya V.M., Babintsev P.V.
Заглавие: Application of splitting algorithms in the method of finite volumes for numerical solution of the Navier–Stokes equations
Библ. ссылка: Kovenya V.M., Babintsev P.V. Application of splitting algorithms in the method of finite volumes for numerical solution of the Navier–Stokes equations // Journal of Applied and Industrial Mathematics. - 2018. - Vol.12. - Iss. 3. - P.479-491. - ISSN 1990-4789. - EISSN 1990-4797.
Внешние системы: DOI: 10.1134/S1990478918030080; РИНЦ: 35731310; SCOPUS: 2-s2.0-85052135884;
Реферат: eng: We generalize the splitting algorithms proposed earlier for the construction of efficient difference schemes to the finite volume method. For numerical solution of the Euler and Navier–Stokes equations written in integral form, some implicit finite-volume predictor-corrector scheme of the second order of approximation is proposed. At the predictor stage, the introduction of various forms of splitting is considered, which makes it possible to reduce the solution of the original system to separate solution of individual equations at fractional steps and to ensure some stability margin of the algorithm as a whole. The algorithm of splitting with respect to physical processes and spatial directions is numerically tested. The properties of the algorithm are under study and we proved its effectiveness for solving two-dimensional and three-dimensional flow-around problems.
Ключевые слова: Three-dimensional flow; Stokes equations; Stability margins; Splitting algorithms; Predictor-corrector schemes; Numerical solution; Finite volume schemes; Efficient difference scheme; Supersonic flow; Navier Stokes equations; Numerical methods; Finite volume method; supersonic flow; splitting algorithm; shock wave; finite-volume scheme; Euler and Navier–Stokes equations; Shock waves;
Издано: 2018
Физ. характеристика: с.479-491
1. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].
2. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1989) [in Russian].
3. N. N. Yanenko, Fractional Step Method for Solving Multidimensional Problems of Mathematical Physics (Nauka, Novosibirsk, 1967) [in Russian].
4. P. J. Roache, Computational Fluid Dynamics (Hermosa, Socorro,NewMexico, 1972; Mir, Moscow, 1980).
5. C. A. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques and Vol. 2: Specific Techniques for Different Flow Categories (Springer, Berlin, 1991; Mir, Moscow, 1991).
6. S. Yamomoto and H. Daiguji, “Higher-Order AccurateUpwind Schemes for Solving the Compressible Euler and Navier–Stokes Equations,” Computer and Fluids 22, 259–270 (1993).
7. R. J. Le Veque, Finite Volume Methods for Hyperbolic Problems (Univ. Press, Cambridge, 2002).
8. J. B. Vos, A. Rizzi, D. Darrac, and E. H. Hirschel, “Navier–Stokes Solvers in European Aircraft Design,” Progress in Aerospace Sci. 38, 601–697 (2002).
9. O. Hassan, K. Morgan, E. J. Probert, and J. Peraire, “Unstructured TetrahedralMeshGeneration for Three-Dimensional Viscous Flows,” J. Numer.Methods Engrg. 39, 549–567 (1996).
10. V. M. Kovenya and N. N. Yanenko, Splitting Method in Problems of Gas Dynamics (Nauka, Novosibirsk, 1981) [in Russian].
11. V. M. Kovenya, Splitting Algorithms for Solving Multi-Dimensional Problems of Aerohydrodynamics (Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2014) [in Russian].
12. A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Nauka, Moscow, 1978; Birkhäuser, Basel, 1989).
13. J. S. Sheng, “A Survey of Numerical Methods for Solving the Navier–Stokes Equations of Compressible Gas Flows,” Aerokosmich. Tekhn. No. 2, 65–92 (1986).
14. A. Lerat and C. Corre, “High Order Residual-Based Compact Schemes on Structured Grids,” in 34th Computing Fluid Dynamics Course, Vol. 1 (Von Karman Institute for Fluid Dynamics, Paris, 2006), pp.1–111.
15. C. Corre, G. Hanss, and A. Lerat, “A Residual Based Compact Scheme for the Unsteady Compressible Navier–Stokes Equations,” Computers and Fluids 34, 561–580 (2005).
16. R. M. Beam and R. F. Warming, “An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation Law Form,” J. Comput. Phys. 22, 87–108 (1976).
17. V. I. Pinchukov and Ch. V. Shu, Numerical Methods of Higher Orders for Aerodynamic Problems (Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].
18. A. I. Tolstykh, Compact Difference Schemes and Their Applications to the Problems of Aerohydrodynamics (Nauka, Moscow, 1990) [in Russian].
19. M. Ya. Ivanov, V. G. Krupa, and R. Z. Nigmatullin, “Implicit Scheme due to S. K. Godunov of Higher Accuracy for Integration of the Navier-Stokes Equations,” Zh. Vychisl. Mat. i Mat. Fiz. 29 (6), 888–901 (1989).
20. M. S. Liou and C. Steffen, “A New Flux Splitting Scheme,” J. Comput. Phys. 107, 23–39 (1993).
21. A. S. Lebedev and S. G. Chernyi, PracticalWork on Numerical Solution of Partial Differential Equations (Novosib. Gos. Univ., Novosibirsk, 2000) [in Russian].
22. P. Woodward and P. Collela, “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks,” J. Comput. Phys. 54, 115–173 (1984).
23. V. M. Kovenya and P. V. Babintsev, “Splitting Algorithms in theMethod of FiniteVolumes,” Vychisl. Tekhnol. 20 (3), 65–84 (2015).
24. J. von Neumann, “Oblique Reflection of Shock Waves,” in Collected Works of J. von Neumann, Vol. 6 (Pergamon Press, Oxford, 1963), pp. 238–299.
25. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Pergamon Press, Oxford, 1972; Nauka, Moscow, 1978).
26. V. M. Kovenya, G. A. Tarnavskii, and S. G. Chernyi, Application of the Splitting Method in Aerodynamic Problems (Nauka, Novosibirsk, 1990) [in Russian].
27. A. N. Lyubimov and V. V. Rusanov, The Gas Flows around Blunt Bodies, Vol. 1 (Nauka, Moscow, 1970) [in Russian].