Информация о публикации

Просмотр записей
Инд. авторы: Golushko S.
Заглавие: Mathematical Modeling and Numerical Optimization of Composite Structures
Библ. ссылка: Golushko S. Mathematical Modeling and Numerical Optimization of Composite Structures // Optimum Composite Structures. - 2019. - London: IntechOpen. - P.13-34. - ISBN 978-1-78985-068-0.
Внешние системы: DOI: 10.5772/intechopen.78259; РИНЦ: 37175216;
Реферат: eng: This chapter is devoted to modeling the properties of composite materials and structures. Mathematical relations describing the nonlinear elastic three-point bending of isotropic and reinforced beams with account of different strength and stiffness behavior in tension and compression are obtained. An algorithm for numerical solution of corresponding boundary-value problems is proposed and implemented. Results of numerical modeling were compared to acquired data for polymer matrix and structural carbon fiber reinforced plastics. A computational technology for analysis and optimization of composite pressure vessels was developed and presented.
Ключевые слова: polymer matrix; Cfrp; bending; nonlinear deformation; mathematical modeling; pressure; vessel; COPV; shell theory; optimization; composite;
Издано: London: IntechOpen, 2019
Физ. характеристика: с.13-34
1. Golushko S., Nemirovskii Yu. Direct and inverse problems of mechanics of composite plates and shells. Moscow: Fizmatlit; 2008. 432 p. (in Russian)
2. Boyce M., Arruda E. An experimental and analytical investigation of the large strain compressive and tensile response of glassy polymers//Polymer Engineering & Science. 2004; 30(20):1288-1298. DOI: 10.1002/pen.760302005
3. Lagace P. Nonlinear stress-strain behavior of graphite/epoxy laminates//AIAA Journal. 1985; 23(10):1583-1589. DOI: 10.2514/3.9127
4. Sendeckyj G., Richardson M., Pappas J. Fracture behavior of Thornel 300/5208 graphite/epoxy laminate -Part I: Unnotched laminates. Composite Reliability, American Society for Testing and Materials. 1973; STP580:528-546
5. Vasiliev V., Morozov E. Mechanics and analysis of composite materials. Elsevier. 2001 424 p
6. Timoshenko S. Strength of Materials. Part 1, Elementary Theory and Problems. New York: Van Nostrand; 1955, 359 p
7. Ambartsumyan S. Theory of materials heteroresistant to tension and compression. Moscow: Nauka; 1982. 317 p. (in Russian)
8. Ambartsumyan S. Strength of materials heteroresistant to tension and compression. Yerevan: RAU; 2004. 187 p. (in Russian)
9. Jones R. Mechanics of composite materials with different moduli in tension and compression. Final scientific report AFOSR-TR-78-1400. 1978. 129 p
10. Ambartsumian S., Gnuni V. The flexion of non-linear elastic beam taking into consideration the material resistance to the tension and compression in different ways//NAS RA Reports. Mechanics. 2005; 1. http://elib.sci.am/2005_1/07/07r.htm (in Russian)
11. Daniel I., Albot J. Fabrication, testing and analysis of composite sandwich beams//Composites Science and Technology. 2000;60(12-13):2455-2463. DOI: 10.1016/S0266-3538(00) 00039-7
12. Mostafa A., Shankar K., Morozov E. Experimental theoretical and numerical investigation of the flexural behaviour of the composite sandwich panels with PVC foam core//Applied Composite Materials. 2014; 21:661-675. DOI: 10.1007/s10443-013-9361-4
13. Mostafa A., Shankar K., Morozov E. Independent analytical technique for analysis of the flexural behavior of the composite sandwich panels incorporated with shear keys concept//Materials and Structures. 2014;48(8):2455-2474. DOI: 10.1617/s11527-014-0331-6
14. Amelina E., Golushko S., Erasov V., Idimeshev S., Nemirovskii Y., Semisalov B., Yurchenko A., Yakovlev N. Nonlinear deformation of carbon fiber reinforced plastics: Experiment, model, and simulation//Computational Technologies. 2015; 20(5): 27-51 (in Russian)
15. Bolotin V., Novitchkov Y. The mechanics of multilayered constructions. Moscow: Mashinostroeniye; 1980. 371 p. (in Russian)
16. Nemirovskii Yu., Reznikov B. Strength of elements of composite structures. Novosibirsk SB RAS: Nauka; 1986. 166 p. (in Russian)
17. Golushko S. Direct and inverse problems in the mechanics of composite plates and shells//In: Krause E, Shokin Yu, Resch M, Shokina N, editors. Computational science and high performance computing, Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Vol.88. Springer; 2005. p. 205-227. ISBN 3-540-24120-5
18. Golushko K., Golushko S., Yurchenko A. On modeling of mechanical properties of fibrous composites//In: Krause E, Shokin Yu, Resch M, Kroner D, Shokina N, editors. Computational science and high performance computing IV, Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Vol. 115. Springer; 2011. p. 107-120. DOI: 10.1007/978-3-642-17770-5
19. Golushko S., Idimeshev S., Shapeev V. Application of collocations and least residuals method to problems of the isotropic plates theory//Computational Technologies. 2013; 18(6): 31-43 (in Russian)
20. Golushko S., Idimeshev S., Shapeev V. Development and application of collocations and least residuals method to the solution of problems in mechanics of anisotropic laminated plates//Computational Technologies. 2014; 19(5): 24-36 (in Russian)
21. Shapeev V., Belyaev V., Golushko S., Idimeshev S. New possibilities and applications of the least squares collocation method//EPJ Web Conferences. 2018; 173:01012. DOI: 10.1051/epjconf/201817301012
22. Beeson H., Davis D., Ross W., Tapphorn R. Composite overwrapped pressure vessels. NASA/TP-2002-210769; 2002
23. Thesken J., Murthy P., Phoenix S., Greene N., Palko J., Eldridge J., Sutter J., Saulsberry R., Beeson H. A Theoretical investigation of composite overwrapped pressure vessel (COPV).//Mechanics applied to NASA full scale tests. NASA/TM-2009-215684; 2009
24. Stadler W., Krishnan V. Natural structural shapes for shells of revolution in the membrane theory of shells.//Structural Optimization. 1989; 1:19-27
25. Banichuk N. Optimization of axisymmetric membrane shells.//Applied Mathematics and Mechanics. 2007; 1(4): 578-586 (in Russian)
26. Obraztsov I., Vasiliev V., Bunakov V. Optimum Reinforcing of Composite Shells of Rotation. Moscow: Mashinostroenie; 1977, 144 p. (in Russian)
27. Vasiliev V., Krikanov A., Razin A. New generation of filament-wound composite pressure vessels for commercial applications.//Composite Structures. 2003; 62: 449-459
28. Vafaeesefat A. Optimization of composite pressure vessels with metal liner by adaptive response surface method.//Journal of Mechanical Science and Technology. 2011; 25(11): 2811-2816
29. Papadrakakis M., Lagaros N. Soft computing methodologies for structural optimization.//Applied Soft Computing. 2003; 3(3): 283-300
30. Liang C., Chen H., Wang C. Optimum design of dome contour for filament-wound composite pressure vessels based on a shape factor.//Composite Structures. 2002; 58: 469-482
31. Kim C., Kang J., Hong C. Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm.//Composite Structures. 2005; 67: 443-452
32. Zu L., Koussios S., Beukers A. Shape optimization of filament wound articulated pressure vessels based on non-geodesic trajectories.//Composite Structures. 2010; 92: 339-346
33. Fukunaga H., Uemura M. Optimum design of helically wound composite pressure vessels.//Composite Structures. 1983; 1:31-49
34. Grigorenko Y., Vasilenko A. Static Problem of Anisotropic Inhomogeneous Shells. Moscow: Nauka; 1992, 332 p. (in Russain)
35. Andreev A., Nemirovskii Yu. Multilayer anisotropic shells and plates: bending, stability, oscillation. Novosibirsk: Nauka; 2001. 288 p. (in Russian)
36. Novozhilov V. Theory of Thin Shells. Leningrad: Sudpromgiz; 1951, 431 p. (in Russian)
37. Ascher U., Christiansen J., Russel R. Collocation software for boundary value ODEs.//ACM Transactions on Mathematical Software. 1981; 7(2): 209-222
38. Golushko S., Yurchenko A. Solution of boundary value problems in mechanics of composite plates and shells.//Russian Journal of Numerical Analysis and Mathematical Modeling. 2010; 25(1): 27-55
39. Bertsekas D. Constrained optimization and Lagrange multiplier method. Moscow: Radio; 1987. 400 p. (in Russian)
40. Evtushenko Yu. Methods of solution of extremum problems and their application in systems of optimization. Moscow: Nauka; 1982. 432 p. (in Russian)
41. Gornov A. Computational Technologies for Optimal Control Solution. Novosibirsk: Nauka; 2009, 275 p. (in Russian)
42. Lepikhin A., Moskvichev V., Chernyayev A., Pokhabov Yu., Khalimanovich V. Experimental evaluation of strength and tightness of metal-composite high-pressure vessels.//Deformation and Rupture of Materials. 2015; 6: 30-36 (in Russian)
43. Amelina E., Burov A., Golushko S., Doronin S., Lepikhin A., Moskvichev V., Yurchenko A. Experimental and computational estimation for strength of a metal composite pressure vessel.//Computational Technologies. 2016; 21(5): 3-20 (in Russian)
44. Amelina E., Golushko S., Yurchenko A. Analysis and design of hybrid pressure vessels.//In: CEUR Workshop Proceedings; Vol. 1839. (Mathematical and Information Technologies MIT-2016); 28 August-5 September 2016; Vrnjacka Banja, Serbia; Budva, Montenegro; 2017. p. 244-257