Информация о публикации

Просмотр записей
Инд. авторы: Монарев В.А., Фионов А.Н., Шокин Ю.И.
Заглавие: Обзор современных теоретико-информационных подходов к решению основных задач криптографии и стеганографии
Библ. ссылка: Монарев В.А., Фионов А.Н., Шокин Ю.И. Обзор современных теоретико-информационных подходов к решению основных задач криптографии и стеганографии // Вычислительные технологии. - 2010. - Т.15. - № 2. - С.69-86. - ISSN 1560-7534. - EISSN 2313-691X.
Внешние системы: РИНЦ: 15214577;
Реферат: rus: Теоретико-информационные подходы к криптографии и стеганографии позволяют строить системы защиты информации, стойкость которых доказывается математически строго и не зависит от каких-либо предположений о вычислительной трудоемкости некоторых задач или осуществимости новых вычислительных схем, например, квантовых компьютеров. В связи с этим возникает большой интерес исследователей к таким системам. В статье дается обзор основных направлений исследований в указанной области.
eng: Information-theoretical approaches in cryptography and steganography enable constructing information protection systems whose security is proved with mathematical rigor and does not depend on any assumptions about computational complexity of certain problems or implementability of new computational schemes such as quantum computers. With this regard, there is great interest of many researchers to these systems. In this paper, a review of the main directions in the field is provided.
Ключевые слова: perfect stegosystems; ideal ciphers; perfect cryptosystems; Information-Theoretic Security; steganography; cryptography; совершенные стего- системы; идеальные шифры; совершенные криптосистемы; теоретико-информационная стойкость; стеганография; криптография;
Издано: 2010
Физ. характеристика: с.69-86
Цитирование:
1. Agarwal S., Cramer R., Haan R. Asymptotically optimal two-round perfectly secure message transmission // CRYPTO-06. 2006. R 394-408.
2. Ahn L., Hopper N.J. Public-key steganography // Advances in Cryptology. EUROCRYPT- 2004 (Lecture Notes in Computer Science). Berlin: Springer-Verlag, 2004. Vol. 3027. P. 323-341.
3. Aumann Y., Ding Y.Z., Rabin М.О. Everlasting security in the bounded storage model // IEEE Trans, on Inform. Theory. 2002. Vol. 48. P. 1668-1676.
4. Bennett C.H., Brassard G., Crepeau C., Maurer U. Generalized privacy amplification // Ibid. 1995. Vol. 41. P. 1915-1923.
5. Bloch M., Barros J., Rodrigues M., McLaughlin S. Wireless information-theoretic security // Ibid. 2008. Vol. 54, No. 6. P. 2515-2534.
6. Cachin C., Maurer U. Unconditional security against memory bounded adversaries // Advances in Cryptology - CRYPTO-97. 1997. P. 292-306.
7. Cachin C. An information-theoretic model for steganography // 2nd Intern. Workshop on Information Hiding IH-98 (Lecture Notes in Compute Science). Berlin: Springer-Verlag, 1998. Vol. 1525. P. 306-318.
8. Cachin C. An information-theoretic model for steganography // Inform, and Comput. 2004. Vol. 192, No. 1. P. 41-56.
9. Chen В., Wornell G.WT. Quantization index modulation methods: A class of provably good methods for digital watermarking and information embedding // IEEE Trans. Inform. Theory. 2001. Vol. 47, No. 5. P. 1423-1443.
10. Cohen A.S., Lapidoth A. The Gaussian watermarking game // Ibid. (Special Issue on Shannon Theory). 2002. Vol. 48, No. 6. P. 1639-1667.
11. Costa M.H.M. Writing on dirty paper // IEEE Trans, on Inform. Theory. 1983. Vol. 29, No. 3. P. 439-441.
12. Cox I.J., Killian J., Leighton F.T., Shamoon T. Secure spread spectrum watermarking for multimedia // IEEE Trans. Image Proc. 1997. Vol. 6. P. 1673-1687.
13. Csiszar I., Narayan P. Secrecy capacities for multiple terminals // IEEE Trans. Inform. Theory. 2004. Vol. 50, No. 12. P. 3047-3061.
14. Dedic N., Itkis G., Reyzin L., Russell S. Upper and lower bounds on black box steganography // 2nd Theory of Cryptography Conf. Berlin, Germany: Springer-Verlag, 2005. P. 227-244.
15. Desmedt Y., Wang Y., Burmester M. A complete characterization of tolerable adversary structures for secure point-to-point transmissions without feedback // ISAAC-05. 2005. P. 277-287.
16. Fionov A. Universal homophonic coding // IEEE Intern. Symp. on Information Theory. Washington, DC, 2001. P. 116.
17. Fionov A., Ryabko B. Simple ideal steganographic system for containers with known statistics / / X I Intern. Symp. on Problems of Redundancy in Information and Control Systems. St.-Peterburg, 2007. P. 184-188.
18. Gopala P.K., Lai L., Gamal H. On the secrecy capacity of fading channels // IEEE Trans, on Inform. Theory. 2008. Vol. 54, No. 10. P. 4687-4698.
19. Hayashi M. General nonasymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to the wiretap channel // Ibid. 2006. Vol. 52, No. 4. P. 1562-1575.
20. Hayashi Y., Yamamoto H. Coding theorems for the Shannon cipher system with a guessing wiretapper and correlated source outputs // Ibid. 2008. Vol. 54, No. 6. P. 2808-2817.
21. Hellman M.E. An extension of the Shannon theory approach to cryptography // Ibid. 1977. Vol. 23. P. 289-294.
22. Него А. О. Secure space-time communication // Ibid. 2003. Vol. 49, No. 12. P. 3235-3249.
23. Hopper N., Langford J., von Ahn L. Provably secure steganography // Advances in Cryptology. CRYPTO-2002. Berlin, Germany: Springer-Verlag, 2002. Vol. 2442. P 18-22.
24. Johnson M., Ishwar P., Prabhakan V. et al. On compressing encrypted data // IEEE Trans, on Signal Proc. 2004. Vol. 52, No. 10. P. 2992-3006.
25. Khisti A., Wornell G., Wiesel A., Eldar Y. On the Gaussian MIMO wiretap channel // IEEE Intern. Symp. on Inform. Theory. Nice, France, 2007. P. 2471-2475.
26. Kurosawa K., Suzuki K. Truly efficient 2-round perfectly secure message transmission scheme // IEEE Trans, on Inform. Theory. 2009. Vol. 55, No. 10. P. 5223-5232.
27. Le T.V., Kurosawa K. Efficient public key steganography secure against adaptively chosen stegotext attacks // Tech. Rep. 2003/244. Cryptology ePrint Archive, IACR.
28. Leung-Yan-Cheong S.K., Hellman M.E. The Gaussian wire-tap channel // IEEE Trans, on Inform. Theory. 1978. Vol. 24, No. 4. P. 451-456.
29. Liang Y., Poor H.V., Shamai S. (Shitz) Secure communication over fading channels // Ibid. 2008. Vol. 54, No. 6. P. 2470-2492.
30. Marvel L., Boncelet C.G. Jr., Retter C.T. Spread-spectrum image steganography // IEEE Trans, on Image Proc. 1999. Vol. 8. P. 1075-1083.
31. Maurer U.M. Conditionally-perfect-secrecy and a provably-secure randomized cipher / / J . Cryptol. 1992. Vol. 5. P. 53-66.
32. Maurer U., Wolf S. Information-theoretic key agreement: From weak to strong secrecy for free // Advances in Cryptology - EUROCRYPT-2000. P. 351-368.
33. Merhav N. On random coding error exponents of watermarking codes // IEEE Trans, on Inform Theory. 2000. Vol. 46, No. 3. P. 420-430.
34. Merhav N. A large-deviations notion of perfect secrecy // Ibid. 2003. Vol. 49, No. 2. P. 506-508.
35. Merhav N. On the Shannon cipher system with a capacity-limited key-distribution channel // Ibid. 2006. Vol. 52, No. 3. P. 1269-1273.
36. Merhav N. On joint coding for watermarking and encryption // Ibid. 2006. Vol. 52, No. 1. P. 190-205.
37. Merhav N. Shannon's secrecy system with informed receivers and its application to systematic coding for wiretappered channels // Ibid. 2008. Vol. 54, No. 6. P. 2723-2734.
38. Mittelholzer T. An information-theoretic approach to steganography and watermarking // 3nd Intern. Workshop on Information Hiding (IH-99). Berlin: Springer-Verlag, 2000. Vol. 1768. P. 1-16.
39. Moulin P., О'Sullivan J. Information-theoretic analysis of information hiding / / IEEE Trans, on Inform. Theory. 2003. Vol. 49, No. 3. P. 563-593.
40. Moulin P., Goteti A.K. Block QIM watermarking games // IEEE Trans, on Inform. Forensics and Security. 2006. Vol. 1, No. 3. P. 293-310.
41. Negi R., Goel S. Secret communication using artificial noise // IEEE Vehicular Technology Conf. Toulouse, France, 2006.
42. Ozarow L.H., Wyner A.D. Wire-tap channel II // EUROCRYPT-84. Workshop on Advances in Cryptology: Theory and Applications of Cryptographic Techniques. Paris, France, 1985. P. 33-51.
43. Parada P., Blahut R. Secrecy capacity of SIMO and slow fading channels // IEEE Intern. Symp. Inform. Theory. Adelaide, Australia, 2005. P. 2152-2155.
44. Ryabko В., Fionov A. Efficient homophonic coding // IEEE Trans. Inform. Theory. 1999. Vol. 45, No. 6. P. 2083-2091.
45. Ryabko В., Ryabko D. Information-theoretic approach to steganographic systems // IEEE Intern. Symp. on Information Theory. Nice, France, 2007. P. 2461-2464.
46. Shafiee S., Liu N., Ulukus S. Towards the secrecy of the Gaussian MIMO wire-tap channel: The 2-2-1 channel // IEEE Trans, on Inform. Theory. 2009. Vol. 55, No. 9. P. 4033-4039.
47. Shannon C.E. Communication theory of secrecy systems // Bell Syst. Tech. J. 1949. Vol. 28, No. 3. P. 565-715.
48. Shikata J., Matsumoto T. Unconditionally secure steganography against active attacks // IEEE Trans. Inform. Theory. 2008. Vol. 54, No. 6. P. 2690-2705.
49. Srinathan K., Narayanan A., Rangan C. P. Optimal perfectly secure message transmission // CRYPTO-04. 2004. P. 545-561.
50. Tekin E., Yener A. The general Gaussian multiple-access and two-way wiretap channels: Achievable rates and cooperative jamming // IEEE Trans. Inform. Theory. 2008. Vol. 54, No. 6. P. 2735-2751.
51. Thangaraj A., Dihidar S., Calderbank A. R. et al. Applications of LDPC codes to the wiretap channel // Ibid. 2007. Vol. 53. P. 2933-2945.
52. Wang Y., Moulin P. Steganalysis of block-structured stegotext // SPIE. 2004. Vol. 5306: Security, Steganography, and Watermarking of Multimedia Contents VI. P. 477-488.
53. Wyner A.D. The wire-tap channel // Bell Syst. Tech. J. 1975. Vol. 54, No. 8. P. 1355-1387.
54. Yamamoto H. Coding theorem for secret sharing communication systems with two noisy channels // IEEE Trans, on Inform. Theory. 1989. Vol. 35, No. 3. P. 572-578.
55. Yamamoto H. Coding theorem for secret sharing communication systems with two Gaussian wiretap channels // Ibid. 1991. Vol. 37, No. 3. P. 634-638.
56. Yamamoto H. Rate-distortion theory for the Shannon cipher system // Ibid. 1997. Vol. 43, No. 3. P. 827-835.
57. Zhang W., Li S. Security measurements of steganographic systems // ACNS 2004 (Lecture Notes in Computer Science). Berlin, Germany: Springer-Verlag, 2004. Vol. 3089. P. 194-204.
58. Елтышева Е.Ю., Фионов A.H. Построение стегосистемы на базе растровых изображений с учетом статистики младших бит // Вестник СибГУТИ. 2009. № 1. С. 67-84.
59. Рябко Б.Я. Просто реализуемая идеальная криптографическая система // Проблемы передачи информации. 2000. Т. 36, № 1. С. 90-104.
60. Рябко Б.Я., Фионов А.Н. Алгоритмы кодирования для идеальных стеганографических систем // Вестник НГУ. Информ. технологии. 2008. № 2. С. 88-93.
61. Рябко Б.Я., Фионов А.Н. Идеальные стеганографические системы // Докл. ТУСУРа. 2008. № 2, ч. 1. С. 61-62.